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Modeling SiC Schottky diodes 
 
Recently, analog behavioral models (ABM)-for Silicon 
Carbide, SiC, devices have been published [1],[2],[3]. The 
main reason cited for using ABM instead of built-in SPICE 
3 diode model is to include dynamic thermal modeling. 
Moreover, none of these models are described in sufficient 
detail to reproduce the Authors data. The approach taken 
in [4] is reproducible, albeit, values for EG and the Rs 
temperature coefficient don’t agree with our 
measurements. We, at Intusoft, back in 1988 have shown 
how to do this in newsletters 10 and 11 (search “thermal 
node” in our PDF VIEWER).  The downside of doing this is 
increased complexity and poor convergence properties. 
The built-in SPICE models handle the problem, as long as 
the EG and XTI parameters are included in the SPICE 
diode model and the steady state temperature, “Temp” is 
set as the model parameter (“Temp” is a SPICE3 
enhancement). Here is why problems occur using the ABM 
thermal model for every-day use: 

 
1. Behavioral models use abrupt switching to 
change operating regions. If handled improperly, 
this state switching can oscillate between 
transient operating points and never properly 
converge. The SPICE built-in models have been 
proven to work with experience of millions of 
successful circuits simulated. These models 
include heuristic mode switching algorithms not 
used in the cited ABM’s. 
 
2. The device temperature requires many 
seconds, perhaps several minutes, to come to 
steady state. Generally, circuit response only 
needs a fraction of a second of simulation time to 
give correct answers. So its best to solve the 
thermal problems separately and then include 

device temperatures in the individual device 
models. (It is important for simulations to take 
less than several seconds in real time so that 
human interaction can efficiently occur in an 
iterative design process. It is not all right to claim 
that it’s OK to take “forever” to get the “right” 
answer when a “very close” result is possible in 
several seconds) 

 

 
There are cases requiring a thermal model and some of 
the problems can be mitigated by reducing the thermal 
time constants, for example, turning hours into seconds. 
This has been successfully done in our Battery library and 
the Power Integrations, TNY device models, back in 2007.  

 

Making a SiC model using SPICE 3 built-in 
model: The model parameters for SPICE 3 are set up so 

that XTI and EG have no affect at the model temperature, 
Tnom, which defaults to “room” temperature, about 300 
Deg K or 27 Deg C. So you can go ahead and use your 
favorite model makers; we use our own SpiceMod. Then 
you need to add the “correct” values for EG and XTI. 
Neither of these values is readily available in the literature 
and many reported values are completely incorrect, 
ignoring the fact that the commercial SiC devices are 
metal barrier; that is, Schottky devices. The barrier voltage 
or EG is significantly lower for metal junction than for pn 
junctions. The lower forward drop allows for significantly 
higher power supply efficiency, and in the case of Silicon, 
sharply reduce reverse recovery time. Reverse or minority 
carrier recovery is not an Issue for a Silicon Carbide 
because it is a majority carrier device. Some pay-for 
references claim to have the correct answer [5]; however 
it’s less expensive and sure fire to buy some devices and 
measure the parameters.  

 
To find EG, you measure the forward drop at low current at 
2 widely separated temperatures. Room temperature and 
175 DegC are easily measured using an oven. Here’s 
what we get using a CREE C3D02060F 

 

 

 

 



 

 
I(mA)  T(Deg. C.)  Vf(Volts) 

Device 1 

1  23.1   .776 

1  160.8   .548 

Device 2 

1  23.   .766 

1  153.4   .551 

Device 3 

1  23.1   .776 

1  159.4   .540 

Device 4 

1  24.3   .766 

1  157.3   .549 

EG(Average)=1.22 

 
Plugging EG into our simulator, we find it should be 
corrected to 1.16 because it’s not a straight-line 
extrapolation to 0 Deg K, and SPICE3 accounts for 
bending of the EG vs. Temp curve. 
 
IKF is a bit more difficult; we will use the default, 3, for now 
and see if any adjustment is needed. 
 
SPICE 3 treats bulk resistance, RS, in the diode model [6] 
as a constant (no temperature coefficient), resulting in 
incorrect results above 25% of device rated current for SiC 
devices. The bulk resistance temperature coefficient can 
be added using an external resistor.  But, here’s the rub: 
There is no single behavior for this resistance temperature 
coefficient. It will vary depending on device construction, 
material and impurity levels. It generally runs around 6% 
per Deg C for Silicon devices. Extrapolating the resistance 
to 0 Deg K results in a negative resistance. The simplest 
way to avoid the problem is to introduce a second order 
term that has a value of TC1/273. Then the resistance is 
given by: 
 
 R(T) = R(To=27 Deg C) * (1+TC1*(T-To) + TC1/273*(T-To)^2) 

 
So at least we can make believe it’s accurate all the way 
down to absolute 0. At any rate, it should be accurate over 
the range of –55 Deg. C to +175 Deg. C for which the 
devices are specified to work. For CREE devices, we use 
the following: 
 
 R(T) = R(To) + 6m*(T-To) + 22u*(T-To)^2) 

 
Putting it altogether, we can compare the results against 
the datasheet specification. Some have reported XTI=2 
should be used for Si Schottky diodes [7]; however, 
varying XTI from 1 to 3 has very little affect, so we will just 
leave it at 3. 
 
Unlike the other models referenced previously, this model 
relies on first principles to extrapolate thermal behavior. All 
of the others rely on matching the TC1 and TC2 
“constants” to correct bad values for EG, IS and N. 

 

New SpiceMod does it all for you: Now that you 

see how it’s done, we’ve made it even simpler by 

incorporating the results into SpiceMod. Just fill out the 
data sheet parameters and select “SiC” from the “Type” 
drop-list and the models will be wrapped into a subcircuit 
that can be immediately included in your library. Here is an 
example using the CREE C3D02060F data sheet. Note: 
the datasheet low current voltage level isn’t very readable, 
so we used measured data from the test results of the 
devices we used to get EG. You can extrapolate it to other 
SiC diodes by increasing the Area multiplier in our model 
in proportion to the rated current, then using the simulated 
VF in the new SpiceMod spread sheet. 

 

 
 

 
We will post a You Tube video showing how this works for 
adding models to our products and to PSpice. SpiceMod 
connects to our simulator and library manager when run 
with our products. For other SPICE 3 compatible 
simulators, we produce a .lib file that you must change into 
the library format used by your simulator. 
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Controlling the Internet of Things 
 

Using a web browser to control IoT devices: 
You may have used a WiFi router that used an IP address 
to access and program the router. So, how does that work 
and can I do the same for my personal devices?  That’s 
what we will explain in the following articles.  
 
Why use a web browser as a controller: The “smart 
phone” or mobile device is a powerful hand held computer 
available to everyone. Using these devices eliminates the 
need for specialized controllers, thereby reducing the cost 
and making certain applications viable. There are many 
different device operating systems requiring many 
application if the devices are programmed in their native 
language. However, a single application using a web 
browser can operate on ALL hand held devices, desktops, 
tablets and laptops that have an Internet browser. And 
that’s all of them! 
 
Anatomy of a web server:  A web server responds to a 
header request (issued by a web browser) by sending a 
response header and an HTML page back to the 
requester. You can see what these header requests and 
responses look like by using Charles Proxy, a low cost 
proxy server. Two kinds of information concerning the 
request are sent and they are POST and GET.  Below is 
the Charles Proxy view of a login. Notice that this man-in-
the-middle proxy was placed there voluntarily for 
debugging. The actual login credentials are sent as a 
POST and are available using the <raw> view. Scary to 
think that malware can do the same! 
 

 
Figure 1, Charles Proxy display of raw request header 
 
The GET information is sent in the URL bar after the page 
name using name=value syntax as follows: 
…login.php?name1=value1&name2=value2… 
where[=value] is optional. 
 
The POST syntax is similar but is only seen at the end of 
the request header. The web browser cannot view the 
POST information, but it is transmitted over the Internet. 
The Internet connection can be encrypted using https 
(Charles can decode it!) or by sending it over a secure 
shell (ssh). For our purposes, we will not be concerned 
with Internet security issues because we will be using an 



Intranet connection that is ordinarily not available outside 
of your Local Area Network, LAN.  
 
The basic HTML is stateless; that is, given the same GET 
and  POST requests, the HTML will always produce the 
same result. But web pages need to preserve a state; for 
example, when a form is submitted and found to be 
incorrect, it is undesirable to have the user re-enter all of 
the form data.  The state must change to include the 
previously entered date that was correct. 
 
A server-side language such as PHP can save the state 
permanently in its database/memory, or temporarily in its 
$_SESSION variable or regenerate the form by sending 
back the POST fields in the HTML response. The client 
can save data using Java Script, including AJAX and 
JASON or saving state in its cookie or in client memory. 
 
Using a web server as an IoT controller has unusual 
properties: 

1. There are very few clients, frequently only one.  
2. The client issues commands using HTML forms 

3. The server controls IoT devices based on client 
commands 

 
The disadvantage of client side programming is that code 
is public. But it offloads the server and makes GUI based 
interfaces work without sending mouse clicks and/or 
motion over the network. 
 
For IoT control, it makes sense to do most of the work in 
the server because it will ultimately control the IoT devices. 
We will use PHP as the server-side language. PHP is 
open source (free) and can be programmed with a text 
editor. You can download an Apache2 web server with 
PHP and MySQL database support for a variety of 
operating systems. For MAC and Windows, XAMPP is a 
good choice. For Linux, you can fetch the code from the 
repository that connects with your flavor of Linux. Using 
Debian for example, enter at the command line “sudo apt-
get install apache2 –y”. 
 
PHP is similar to the C programming language without 
requiring strong type casting. Variables are preceded with 
a $ sign and are coerced into the correct type. For 
example $x=1.2e3 or $s = “myname” or $n=5 will 
automatically make these floating point, string and integer 
respectively. Types can change on the fly and be assigned 
based of function relationships, as in $y=$n*$x. The suite 
of PHP functions is extreme! Just browse for “ string copy 
php syntax” or whatever else you might need. PHP can be 
either procedural of object oriented. We’ll stick to 
procedural because there are to many things PHP can’t do 
or does differently than a complete oops language like 
C++. The PHP array is amazing. It’s used to hold 
information similar to that found in C program structs. 
Browse for “array php syntax” to learn how they work. 
 
Web Server as a Device Controller: Low cost single 
board computers; for example, the Raspberry PI (rpi), 
costing less that $30 can host an Apache2 server along 

with PHP and MySQL. Configured as a “headless” 
computer, it can be controlled over a network using a 
tightVNC viewer. Adding a case, power supply and RG45 
adapter cable and possibly a USB WiFi brings the 
hardware cost to around $50 for the DIY enthusiast. 
TightVNC is a free Java application allowing you to view 
the remote desktop on your workstation. The rpi can 
control IoT device directly or it can be a gateway device for 
controlling a low power personal area network, lowpan. 
Lowpan networks include Zigbee, MiWi, Z-Wave and many 
others. These networks are characterized by lower bit rate 
transmissions, thereby, requiring less standby power. For 
an automated household with hundreds of IoT devices, a 
lowpan network is necessary to bring the standby power 
down to a reasonable level (10 to 100mW per device). A 
USB lowpan transceiver can cost as little as $10 with an 
even lower cost transceiver operating on each IoT device. 
 
Getting started with your own IoT controller: Besides 
the rpi, you will need a serious toolset. There is no getting 
around having a integrated development environment 
(IDE). The complete toolset we recommend is: 

1. phpStorm, IDE with Xdebug 
2. GIT version control system 
3. TightVNC viewer 
4. Apache2 server with PHP and MySQL 
5. Charles Proxy 
6. Lynda.com 

 
Items 1 and 5 are pay-for items. Everything else is open 
source. Using an rpi has great documentation advantages. 
The rpi community has already answered most questions 
you may have. PHP and MySQL offer the same level of 
online expertise, giving you the power to create your 
applications. 
 
You can use Lynda.com to learn how to use PHP and 
MySQL to create a web page, and moreover create a web 
interface that can grow dynamically as you add content.  
Modern web pages are easily created using phpStorm, 
largely because the styles have been separated from 
content using cascading style sheets, CSS. Our next 
article will concentrate on building a content management 
system, CMS, style web application. CMS allow the web 
page to grow automatically as you add more IoT devices. 
 
The GIT version control system is unique in that it is a 
distributed system. You don’t need to checkout a file. Just 
make your changes and use the GitHub website to archive 
your changes. If others work with you, then GIT can easily 
merge changes, almost always without any interaction as 
long as you keep it current with frequent “git push” 
commands. If a colleague made changes, using “git pull” 
merges the changes into you archive. Followed by a “git 
push” to make the archive current. Even if you work alone, 
GIT makes sure all of your history is saved so that you can 
rollback if you screwed up your working copy. GitHub is 
free if you make your archive public. You still control users 
ability to push changes into your archive. 
 
 



A Generic Power Factor Correction, 
PFC, model 

Theory: A PFC is used to produce an apparent resistive 
load (Req) to AC mains (Vmains), and convert the 
pulsating AC input power to a constant DC output. This is 
accomplished by forcing the primary side current to be 
Vmains/Req. A single stage controller filters the rectified 
output using a capacitor. The output voltage becomes a 
low ripple DC as the capacitor value is increased.  
 
Some of control laws that can be used are: 

1. Constant input power 
2. Constant output voltage 
3. Constant output current 

 
The model: PFC’s use a number of different switch mode 
topologies. The result is a different switching current 
signature at the input and output; however, the average 
values all obey the same theory. 
 

Imains = Vmains*Geq 
Iload = abs(Imains)* vmains/v(vload)) 

 
Constant input resistance control is accomplished with  
 

Geq = Pavg/ average(vmains^2) == constant value 
 

This, simplest of all control laws, where Geq is constant is 
illustrated below in Figure 2. 
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Figure 2, IsSpice4  PFC model for input current control 

 
The transformer model is a “DC” transformer with the ratio 
controlling the output voltage level. 
 
Other control laws require a feedback loop to force control of 
another voltage or current.  Analog controllers will be devices 
the us a P-I controller, whose gain is given by: 

 
GAIN =  (P + I/s) 

 

And applying the output to B2. These analog controllers 
and a deadbeat controller, applicable to digital control, 
will be modeled in our next newsletter. 
 
The mains and capacitor currents contain a switching signature 
that depends on the circuit topology. This signature can be 
superimposed with the average model to allow evaluation of 
snubbers and EMI filters. Modeling these affects will be 
discussed in our next newsletter. 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
 

 
  

 
 
 

 
 


