

Newsletter Issue #86, Nov 2016

In This Issue

page Story

1 Modeling SiC Schottky diodes

3 Controlling the Internet of Things

5 A Generic Power Factor Correction,
PFC, model

Modeling SiC Schottky diodes

Recently, analog behavioral models (ABM)-for Silicon
Carbide, SiC, devices have been published [1],[2],[3]. The
main reason cited for using ABM instead of built-in SPICE
3 diode model is to include dynamic thermal modeling.
Moreover, none of these models are described in sufficient
detail to reproduce the Authors data. The approach taken
in [4] is reproducible, albeit, values for EG and the Rs
temperature coefficient don’t agree with our
measurements. We, at Intusoft, back in 1988 have shown
how to do this in newsletters 10 and 11 (search “thermal
node” in our PDF VIEWER). The downside of doing this is
increased complexity and poor convergence properties.
The built-in SPICE models handle the problem, as long as
the EG and XTI parameters are included in the SPICE
diode model and the steady state temperature, “Temp” is
set as the model parameter (“Temp” is a SPICE3
enhancement). Here is why problems occur using the ABM
thermal model for every-day use:

1. Behavioral models use abrupt switching to
change operating regions. If handled improperly,
this state switching can oscillate between
transient operating points and never properly
converge. The SPICE built-in models have been
proven to work with experience of millions of
successful circuits simulated. These models
include heuristic mode switching algorithms not
used in the cited ABM’s.

2. The device temperature requires many
seconds, perhaps several minutes, to come to
steady state. Generally, circuit response only
needs a fraction of a second of simulation time to
give correct answers. So its best to solve the
thermal problems separately and then include

device temperatures in the individual device
models. (It is important for simulations to take
less than several seconds in real time so that
human interaction can efficiently occur in an
iterative design process. It is not all right to claim
that it’s OK to take “forever” to get the “right”
answer when a “very close” result is possible in
several seconds)

There are cases requiring a thermal model and some of
the problems can be mitigated by reducing the thermal
time constants, for example, turning hours into seconds.
This has been successfully done in our Battery library and
the Power Integrations, TNY device models, back in 2007.

Making a SiC model using SPICE 3 built-in
model: The model parameters for SPICE 3 are set up so

that XTI and EG have no affect at the model temperature,
Tnom, which defaults to “room” temperature, about 300
Deg K or 27 Deg C. So you can go ahead and use your
favorite model makers; we use our own SpiceMod. Then
you need to add the “correct” values for EG and XTI.
Neither of these values is readily available in the literature
and many reported values are completely incorrect,
ignoring the fact that the commercial SiC devices are
metal barrier; that is, Schottky devices. The barrier voltage
or EG is significantly lower for metal junction than for pn
junctions. The lower forward drop allows for significantly
higher power supply efficiency, and in the case of Silicon,
sharply reduce reverse recovery time. Reverse or minority
carrier recovery is not an Issue for a Silicon Carbide
because it is a majority carrier device. Some pay-for
references claim to have the correct answer [5]; however
it’s less expensive and sure fire to buy some devices and
measure the parameters.

To find EG, you measure the forward drop at low current at
2 widely separated temperatures. Room temperature and
175 DegC are easily measured using an oven. Here’s
what we get using a CREE C3D02060F

I(mA) T(Deg. C.) Vf(Volts)

Device 1

1 23.1 .776

1 160.8 .548

Device 2

1 23. .766

1 153.4 .551

Device 3

1 23.1 .776

1 159.4 .540

Device 4

1 24.3 .766

1 157.3 .549

EG(Average)=1.22

Plugging EG into our simulator, we find it should be
corrected to 1.16 because it’s not a straight-line
extrapolation to 0 Deg K, and SPICE3 accounts for
bending of the EG vs. Temp curve.

IKF is a bit more difficult; we will use the default, 3, for now
and see if any adjustment is needed.

SPICE 3 treats bulk resistance, RS, in the diode model [6]
as a constant (no temperature coefficient), resulting in
incorrect results above 25% of device rated current for SiC
devices. The bulk resistance temperature coefficient can
be added using an external resistor. But, here’s the rub:
There is no single behavior for this resistance temperature
coefficient. It will vary depending on device construction,
material and impurity levels. It generally runs around 6%
per Deg C for Silicon devices. Extrapolating the resistance
to 0 Deg K results in a negative resistance. The simplest
way to avoid the problem is to introduce a second order
term that has a value of TC1/273. Then the resistance is
given by:

 R(T) = R(To=27 Deg C) * (1+TC1*(T-To) + TC1/273*(T-To)^2)

So at least we can make believe it’s accurate all the way
down to absolute 0. At any rate, it should be accurate over
the range of –55 Deg. C to +175 Deg. C for which the
devices are specified to work. For CREE devices, we use
the following:

 R(T) = R(To) + 6m*(T-To) + 22u*(T-To)^2)

Putting it altogether, we can compare the results against
the datasheet specification. Some have reported XTI=2
should be used for Si Schottky diodes [7]; however,
varying XTI from 1 to 3 has very little affect, so we will just
leave it at 3.

Unlike the other models referenced previously, this model
relies on first principles to extrapolate thermal behavior. All
of the others rely on matching the TC1 and TC2
“constants” to correct bad values for EG, IS and N.

New SpiceMod does it all for you: Now that you

see how it’s done, we’ve made it even simpler by

incorporating the results into SpiceMod. Just fill out the
data sheet parameters and select “SiC” from the “Type”
drop-list and the models will be wrapped into a subcircuit
that can be immediately included in your library. Here is an
example using the CREE C3D02060F data sheet. Note:
the datasheet low current voltage level isn’t very readable,
so we used measured data from the test results of the
devices we used to get EG. You can extrapolate it to other
SiC diodes by increasing the Area multiplier in our model
in proportion to the rated current, then using the simulated
VF in the new SpiceMod spread sheet.

We will post a You Tube video showing how this works for
adding models to our products and to PSpice. SpiceMod
connects to our simulator and library manager when run
with our products. For other SPICE 3 compatible
simulators, we produce a .lib file that you must change into
the library format used by your simulator.

[1] SiC Schottky diode electrothermal macromodel
Francesc N. Masana
Departament d'Enginyeria Electrónica (DEE), Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain
Mixed Design of Integrated Circuits and Systems
(MIXDES), 2010 Proceedings of the 17th International
Conference

[2] Parameter extraction sequence for silicon carbide
schottky, merged PiN Schottky, and PiN power diode
models T.R. McNutt Arkansas Univ., Fayetteville, AR, USA
Power Electronics Specialists Conference, 2002. pesc 02.
2002 IEEE 33rd Annual

[3] SiC Merged PiN and Schottky (MPS) Power Diodes
Electrothermal Modeling in SPICE Authors: A. Lakrim, D.
Tahri
World Academy of Science and Technology, International
Journal of Electrical, Computer, Electronic and
Communication Engineering Vol. 8 No. 8, 2014

[4] DC characteristics of the SiC Schottky diodes
W. Janke1 / A. Hapka1 / M. Oleksy1
Department of Electronics and Informatics, Koszalin
University of Technology, 2 Sniadeckich St., 75-453
Koszalin, Poland1
Bulletin of the Polish Academy of Sciences Technical
Sciences
The Journal of Polish Academy of Sciences Volume 59,
Issue 2 (Jun 2011)

[5] Barrier height determination of SiC Schottky diodes by
capacitance and current–voltage measurements C.
Raynaud1, K. Isoird1, M. Lazar1, C. M. Johnson2 and N.
Wright2 . Appl. Phys. 91, 9841 (2002);
http://dx.doi.org/10.1063/1.1477256

 [6]
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/Use
rGuide/overview_fr.html

[7]http://www.acsu.buffalo.edu/~wie/applet/spice_pndiode/
spice_diode_table.html

Controlling the Internet of Things

Using a web browser to control IoT devices:
You may have used a WiFi router that used an IP address
to access and program the router. So, how does that work
and can I do the same for my personal devices? That’s
what we will explain in the following articles.

Why use a web browser as a controller: The “smart
phone” or mobile device is a powerful hand held computer
available to everyone. Using these devices eliminates the
need for specialized controllers, thereby reducing the cost
and making certain applications viable. There are many
different device operating systems requiring many
application if the devices are programmed in their native
language. However, a single application using a web
browser can operate on ALL hand held devices, desktops,
tablets and laptops that have an Internet browser. And
that’s all of them!

Anatomy of a web server: A web server responds to a
header request (issued by a web browser) by sending a
response header and an HTML page back to the
requester. You can see what these header requests and
responses look like by using Charles Proxy, a low cost
proxy server. Two kinds of information concerning the
request are sent and they are POST and GET. Below is
the Charles Proxy view of a login. Notice that this man-in-
the-middle proxy was placed there voluntarily for
debugging. The actual login credentials are sent as a
POST and are available using the <raw> view. Scary to
think that malware can do the same!

Figure 1, Charles Proxy display of raw request header

The GET information is sent in the URL bar after the page
name using name=value syntax as follows:
…login.php?name1=value1&name2=value2…
where[=value] is optional.

The POST syntax is similar but is only seen at the end of
the request header. The web browser cannot view the
POST information, but it is transmitted over the Internet.
The Internet connection can be encrypted using https
(Charles can decode it!) or by sending it over a secure
shell (ssh). For our purposes, we will not be concerned
with Internet security issues because we will be using an

Intranet connection that is ordinarily not available outside
of your Local Area Network, LAN.

The basic HTML is stateless; that is, given the same GET
and POST requests, the HTML will always produce the
same result. But web pages need to preserve a state; for
example, when a form is submitted and found to be
incorrect, it is undesirable to have the user re-enter all of
the form data. The state must change to include the
previously entered date that was correct.

A server-side language such as PHP can save the state
permanently in its database/memory, or temporarily in its
$_SESSION variable or regenerate the form by sending
back the POST fields in the HTML response. The client
can save data using Java Script, including AJAX and
JASON or saving state in its cookie or in client memory.

Using a web server as an IoT controller has unusual
properties:

1. There are very few clients, frequently only one.
2. The client issues commands using HTML forms

3. The server controls IoT devices based on client
commands

The disadvantage of client side programming is that code
is public. But it offloads the server and makes GUI based
interfaces work without sending mouse clicks and/or
motion over the network.

For IoT control, it makes sense to do most of the work in
the server because it will ultimately control the IoT devices.
We will use PHP as the server-side language. PHP is
open source (free) and can be programmed with a text
editor. You can download an Apache2 web server with
PHP and MySQL database support for a variety of
operating systems. For MAC and Windows, XAMPP is a
good choice. For Linux, you can fetch the code from the
repository that connects with your flavor of Linux. Using
Debian for example, enter at the command line “sudo apt-
get install apache2 –y”.

PHP is similar to the C programming language without
requiring strong type casting. Variables are preceded with
a $ sign and are coerced into the correct type. For
example $x=1.2e3 or $s = “myname” or $n=5 will
automatically make these floating point, string and integer
respectively. Types can change on the fly and be assigned
based of function relationships, as in $y=$n*$x. The suite
of PHP functions is extreme! Just browse for “ string copy
php syntax” or whatever else you might need. PHP can be
either procedural of object oriented. We’ll stick to
procedural because there are to many things PHP can’t do
or does differently than a complete oops language like
C++. The PHP array is amazing. It’s used to hold
information similar to that found in C program structs.
Browse for “array php syntax” to learn how they work.

Web Server as a Device Controller: Low cost single
board computers; for example, the Raspberry PI (rpi),
costing less that $30 can host an Apache2 server along

with PHP and MySQL. Configured as a “headless”
computer, it can be controlled over a network using a
tightVNC viewer. Adding a case, power supply and RG45
adapter cable and possibly a USB WiFi brings the
hardware cost to around $50 for the DIY enthusiast.
TightVNC is a free Java application allowing you to view
the remote desktop on your workstation. The rpi can
control IoT device directly or it can be a gateway device for
controlling a low power personal area network, lowpan.
Lowpan networks include Zigbee, MiWi, Z-Wave and many
others. These networks are characterized by lower bit rate
transmissions, thereby, requiring less standby power. For
an automated household with hundreds of IoT devices, a
lowpan network is necessary to bring the standby power
down to a reasonable level (10 to 100mW per device). A
USB lowpan transceiver can cost as little as $10 with an
even lower cost transceiver operating on each IoT device.

Getting started with your own IoT controller: Besides
the rpi, you will need a serious toolset. There is no getting
around having a integrated development environment
(IDE). The complete toolset we recommend is:

1. phpStorm, IDE with Xdebug
2. GIT version control system
3. TightVNC viewer
4. Apache2 server with PHP and MySQL
5. Charles Proxy
6. Lynda.com

Items 1 and 5 are pay-for items. Everything else is open
source. Using an rpi has great documentation advantages.
The rpi community has already answered most questions
you may have. PHP and MySQL offer the same level of
online expertise, giving you the power to create your
applications.

You can use Lynda.com to learn how to use PHP and
MySQL to create a web page, and moreover create a web
interface that can grow dynamically as you add content.
Modern web pages are easily created using phpStorm,
largely because the styles have been separated from
content using cascading style sheets, CSS. Our next
article will concentrate on building a content management
system, CMS, style web application. CMS allow the web
page to grow automatically as you add more IoT devices.

The GIT version control system is unique in that it is a
distributed system. You don’t need to checkout a file. Just
make your changes and use the GitHub website to archive
your changes. If others work with you, then GIT can easily
merge changes, almost always without any interaction as
long as you keep it current with frequent “git push”
commands. If a colleague made changes, using “git pull”
merges the changes into you archive. Followed by a “git
push” to make the archive current. Even if you work alone,
GIT makes sure all of your history is saved so that you can
rollback if you screwed up your working copy. GitHub is
free if you make your archive public. You still control users
ability to push changes into your archive.

A Generic Power Factor Correction,
PFC, model

Theory: A PFC is used to produce an apparent resistive
load (Req) to AC mains (Vmains), and convert the
pulsating AC input power to a constant DC output. This is
accomplished by forcing the primary side current to be
Vmains/Req. A single stage controller filters the rectified
output using a capacitor. The output voltage becomes a
low ripple DC as the capacitor value is increased.

Some of control laws that can be used are:

1. Constant input power
2. Constant output voltage
3. Constant output current

The model: PFC’s use a number of different switch mode
topologies. The result is a different switching current
signature at the input and output; however, the average
values all obey the same theory.

Imains = Vmains*Geq
Iload = abs(Imains)* vmains/v(vload))

Constant input resistance control is accomplished with

Geq = Pavg/ average(vmains^2) == constant value

This, simplest of all control laws, where Geq is constant is
illustrated below in Figure 2.

V1

1.44.Vrm1sin(2piF)

1

B3
Current

v(vmains,ret)*v(Vgeq)
6

C1
{Cload}

parameters

Vrms=120

F=60

N=.25

P=100

Geq=P/(Vrms^2)

Cload=1500u

Vgeq

{Geq}

B2

R1
{1/Geq*N*N}

7

V2

IV2

scope

plot i(v1)

plot Vout

pwr = IV2*vload

plot pwr

V3

IV3

vmains

B1
Current
abs(i(v3)*v(vmains,ret)/(v(vload)+1m))

XFMR
RATIO = N

vload Vout

R2
1/gmin

ret

Figure 2, IsSpice4 PFC model for input current control

The transformer model is a “DC” transformer with the ratio
controlling the output voltage level.

Other control laws require a feedback loop to force control of
another voltage or current. Analog controllers will be devices
the us a P-I controller, whose gain is given by:

GAIN = (P + I/s)

And applying the output to B2. These analog controllers
and a deadbeat controller, applicable to digital control,
will be modeled in our next newsletter.

The mains and capacitor currents contain a switching signature
that depends on the circuit topology. This signature can be
superimposed with the average model to allow evaluation of
snubbers and EMI filters. Modeling these affects will be
discussed in our next newsletter.

