
© copyright intusoft 1995
P.O.Box 710

San Pedro, Ca. 90733-0710
Tel. (310) 833-0710
Fax (310) 833-9658

Personal Computer
Circuit Design
Tools

CODE MODEL SOFTWARE DEVELOPMENT KIT

2

intusoft provides this manual “as is" without warranty of any kind,
either expressed or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose.

This publication could contain technical inaccuracies or
typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new
editions of this publication.

Copyright
intusoft , 1995. All Rights Reserved. No part of this publication may
be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language in any form by any means
without written permission of Intusoft.

ISSPICE4 is based on Berkeley SPICE 3F.2 which was developed by
the Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley CA and XSPICE, which was
developed by Georgia Tech Research Corp., Georgia Institute of
Technology, Atlanta Georgia, 30332-0800

Intusoft, the Intusoft logo, ISSPICE, ISSPICE3, ISSPICE4, SPICENET,
INTUSCOPE, PRESPICE, IsEd, and CMSDK are trademarks of Intusoft,
Inc. All company/product names are trademarks/registered trade-
marks of their respective owners.

All company/product names are trademarks/registered trademarks
of their respective owners. Microsoft Visual C++, Windows,
Windows95 and Windows NT are registered trademarks of
Microsoft Corporation.

Printed in the U.S.A.

is a trademark of intusoft

3

Table Of Contents

Chapter 1 Table Of Contents

7 Introduction
7 What’s In the CMSDK Package
7 Hardware & Software Requirements
7 Installing The CMSDK
8 Hardware Protection Key Installation
9 Definitions

Chapter 2 Simulation Algorithms

11 ISSPICE4 System Overview
15 Analog Simulation
17 Digital Simulation
18 Node Bridge Models
18 User-Defined Nodes

Chapter 3 Code Model Development

21 Introduction
22 The Code Modeling SDK
25 Adding Tools To Visual C++
27 Creating Code Models
28 Creating A Project Directory
28 Editing Support Files
29 Opening The Project File
29 Creating The Interface Specification File
37 Creating The Model Definition File
43 Building The Code Model DLL
44 Building A DEBUG DLL
44 Setting Up The Debug Environment
45 Accessing A Code Model in ISSPICE4
46 User-Defined Nodes
47 UDN Directory
47 Editing UDNpath.Lst
48 UDN Project File
48 User-Defined Node Definition File
50 Building A UDN

4

Chapter 4 API Calls

51 What Are API Calls?
53 API Calls
57 AC_GAIN
58 ANALYSIS
58 ARGS
59 CALL_TYPE
59 CALLOC
59 cktABSTOL
60 cktNOMTEMP
60 cktRELTOL
60 cktTEMP
61 cktVOLT_TOL
61 cm_analog_auto_partial
62 cm_analog_converge
62 cm_analog_not_converged
62 cm_ramp_factor
63 cm_analog_set_perm_bkpt
64 cm_analog_set_temp_bkpt
64 cm_climit_fcn
66 cm_complex_add
66 cm_complex_div
66 cm_complex_mult
67 cm_complex_set
67 cm_complex_sub
68 cm_event_alloc
68 cm_event_get_ptr
69 cm_event_queue
69 cm_message_get_errmsg
70 cm_message_send
71 cm_netlist_get_c
71 cm_netlist_get_l
72 cm_smooth_corner
73 cm_smooth_discontinuity
74 cm_smooth_pwl
74 deltaTemp
75 EQUAL
75 FREE
76 getVar
77 getVarPtr
77 gMIN
77 imagFreq
78 INIT
78 INPUT

TABLE OF CONTENTS

5

79 INPUT_STATE
80 INPUT_STRENGTH
80 INPUT_STRUCT_PTR
81 INPUT_STRUCT_PTR_ARRAY
82 INPUT_STRUCT_PTR_ARRAY_SIZE
82 isBYPASS
82 isINIT
83 isMODEAC
83 isMODEINITFIX
83 isMODEINITJCT
84 isMODEINITPRED
84 isMODEINITSMSIG
84 isMODEINITTRAN
85 isMODETRAN
85 isMODETRANOP
86 isMODEUIC
86 lastSTATE
86 lastSTATEptr
87 LOAD
88 MALLOCED_PTR
88 MALLOC
88 newState
89 newVar
90 OUTPUT
90 OUTPUT_CHANGED
91 OUTPUT_DELAY
92 OUTPUT_STATE
92 OUTPUT_STRENGTH
93 OUTPUT_STRUCT_PTR
94 PARAM
94 PARAM_SIZE
95 PARAM_NULL
96 PARTIAL
97 PORT_SIZE
97 PORT_NULL
98 postQuit
98 RAD_FREQ
98 realFreq
99 REALLOC
99 stateIntegrate
101 STATIC_VAR
102 STRUCT_MEMBER_ID
102 STRUCT_PTR
103 STRUCT_PTR_1
103 STRUCT_PTR_2

6

104 thisSTATE
104 thisSTATEptr
105 T()
106 TEMPERATURE
106 TIME
106 TOTAL_LOAD
107 udn_XXX_compare
107 udn_XXX_create
108 udn_XXX_dismantle
108 udn_XXX_copy
109 udn_XXX_initialize
110 udn_XXX_invert
110 udn_XXX_ipc_val
111 udn_XXX_plot_val
111 udn_XXX_print_val
111 udn_XXX_resolve

Chapter 5 Examples

113 A Simple Gain Block
119 A Capacitor Model
130 A Digital OR Gate
135 User-Defined Node
140 Node Bridges (Hybrid Models)

Appendices

145 Appendix A: Translation Of SPICE 3 Data Structures
148 Appendix B: The SPICE 3 CKTcircuit Data Structure
149 Appendix C: Project Settings

TABLE OF CONTENTS

7

Introduction

Welcome to Intusoft’s XDL model development environment for
Windows NT or Windows95. This manual provides complete
installation instructions and reference material.

We would like to thank you for purchasing Intusoft software. As
you already know, circuit simulation is an important part of the
overall circuit design task. The ICAPS simulation system and
the CMSDK will provide you with capabilities that will save you
money, improve the understanding of your circuit designs, and
shorten your design cycle.

What’s In the CMSDK Package

Your package should include:

CMSDK disks
Code Model SDK Manual

Hardware & Software Requirements

• Windows NT or Windows95/98
• 486 or Pentium
• Hard disk (approximately 10 megs of disk space)
• Microsoft Visual C++ version 4.x or 5.x

Installing The CMSDK

• Insert the CMSDK Disk 1 into the floppy drive.

• From Windows, run A:Setup if the disk is in the A drive or
B:Setup if the disk is in the B drive.

Follow the directions. When complete, all software will be
installed in the SPICE4 directory.

Back up your
distribution
diskettes!

8

Hardware Protection Key Installation

Included in your package is a hardware protection key that
must be installed before the software can be run. The key
has a 25-pin connector at each end and should be plugged
directly into your parallel port. The key should be located as
close to the port on the back of the computer as possible. If you
already have an output device connected to the parallel port
install the key between the device and the port. The protection
key is transparent to other users of the parallel port and does not
interfere with data sent in either direction on the port.

DO NOT LOSE THIS KEY!

The CMSDK software can not be run without it.

• Once the software and key are in place, the installation is
complete. You may proceed to view the readme files or the
tutorial sections.

Troubleshooting Hardware Protection Key Operation
Although every effort has been made to ensure the highest
levels of quality and compatibility, the protection key, like any
other PC peripheral, might not run on certain PC configurations.

If you have a problem with the key it can usually be overcome
by checking the following:

1) Are the key and printer card inside the computer well-connected
and are their screws properly fastened? Reseat them if they are not.

2) Is a printer connected to the same port as the key? If so, does it work
properly? (Please bear in mind that although this is a good sign, it does
not necessarily mean that the port or the printer are 100% sound). If
there is a printing problem try using another printer cable and if
possible, another printer.

3) If possible, try installing a second parallel port for the protection key,
and thus circumventing any problem caused by the printer. If this is not
possible try replacing the original parallel port.

HARDWARE PROTECTION KEY INSTALLATION

9

4) Try using the ICAP/4 system on another PC.

5) If you are using another key(s), try moving the Intusoft supplied key
closer towards the computer’s parallel port. Many protection keys use
the power from the printer port to operate. If a number of keys are
placed in-line, some printer ports may not be able to supply enough
power and the power drop along the string of keys will cause the keys
at the end to fail.

Definitions

The following terms will be used throughout the documentation:

accessor macros - An API call used processed by CMPP.

AHDL - Analog Hardware Description Language. A high level
language used to describe analog and mixed signal functions.

API calls - Functions, macros, and accessor macros that are
used to interface a code model to the ISSPICE4 simulator.

behavioral modeling - The process of describing the behavior
and structure of a continuous time function using the set of
primitive elements included in the ISSPICE program.

CML.DLL - The Windows DLL that contains all of the Intusoft
XDL code models that are shipped with ISSPICE4. CML.DLL
contains over 40 analog, digital and hybrid code models.

CMSDK - Code Model Software Development Kit. The set of
software tools used in conjunction with MS VC++ to convert IFS
and MOD files into a Windows DLL that ISSPICE4 can access.

code model - A model developed using XDL. A code model
consists of an IFS file and a MOD file.

DLL - Windows Dynamic Linked Library.

hybrid - An XDL code model which has ports that are analog
and event driven (digital, real, integer, etc.).

10

IFS file - A file that contains a description of a code model’s ports
and model parameters.

macromodel - A combination of primitive ISSPICE elements
grouped together to emulate a particular function.

MOD file - A C language file that describes the behavior of a
code model.

primitives - The most basic building blocks included in the
ISSPICE4 program. Blocks include electrical (resistors, capaci-
tors, BJTs), mathematical (equations, Tables, polynomials),
digital (boolean expressions), and procedural (If-Then-Else)
elements.

state variable - A variable for which a time history is stored.

VHDL - VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language. A high level language used to model and
develop digital circuitry.

Visual C++ - Refers to Microsoft Visual C++ version 1.1 or 2.x

XDL - XSPICE eXtended Description Language. The combina-
tion of the IFS and MOD files make up a model’s XDL descrip-
tion.

XSPICE - a derivative of Berkeley SPICE 3C.1 produced by the
Georgia Tech Research Corporation, Georgia Institute of Tech-
nology, a unit of the University System of Georgia.

DEFINITIONS

11

SIMULATION ALGORITHMS

ISSPICE4 System Overview

A top-level diagram of the ISSPICE4 simulator is outlined in the
following paragraphs.

Transient Simulation of Analog Circuits
The ISSPICE4 simulator solves a set of nonlinear differential
equations describing the behavior of an electrical circuit. The
equations are formulated using Kirchoff’s current law, KCL; that
is, the summation of currents at each circuit node equals a
constant. The following matrix algebra illustrates the KCL
solution:

[Y][V] = [J]
where: Y is the admittance matrix

V are the node voltages
J is the node current excitation

This formulation does not handle voltage defined branches or
current controlled branches. In order to handle theses cases
without having to use a different topology for Transient and DC
analysis, a modified nodal analysis (MNA) formulation is used
[1].

Y B
C D

 Vn
Ib

 = J
E

where:
Y,V and J are defined above and there are n nodes and b branches
I is the vector of voltage defined branch currents
B is the coupling matrix for current controlled, current defined branches
C, D and E define the relations for the voltage defined branches.

Simulation Algorithms

12

ISSPICE4 SYSTEM OVERVIEW

See the
stateIntegrate
API call for
more
information.

The code model XDL hides these details, filling in the matrix
entries depending on how you set up the interface specification
file. There is, however, one aspect of the solution you must
understand. Your model needs to include the state variables
and provide the partial derivatives needed for the Newton-
Raphson iterations. The following example illustrates the ma-
trix entries for a simple r-c network using a (CAPG) capacitor
code model.

To account for nonlinearities, the equations are iterated using
the Newton-Raphson technique until convergence is deter-
mined. The parameters passed to you for input are the solution
vectors from the last iteration. The values you get for the first
iteration have been predicted forward based on a time history
of solution vectors. Be careful not to alter these input param-
eters or to use them to hold values that are iterated since they
will be discarded and replaced by the next solution vector.

When doing a transient simulation, the circuit’s dynamic states
are represented by their large signal values along with the
partial derivatives used for estimating solution changes in the
Newton-Raphson iteration. The circuit states are saved in an
array of doubles. In the code model XDL you reserve as many
states as you need using the newSTATE function. States carry
with them a time history that depends on the order of the
integration (ie. gear 3). For most applications only the current
and previous states are important. For each state variable, you

V

R

C

1 2

C/dt Icap

=
V1

V2

Ivsrc

0

Icap

Esrc

1
R

1
R

1

1
1
R

C
d
dt

0

1 0 0

-

+

13

SIMULATION ALGORITHMS

will need these 2 entries in order to have the data required for
integration. These states are used for the integrand and integral
in a call to stateIntegrate in order to perform the integration
during a transient analysis. This corresponds to current and
charge in a capacitor code model.

If you use instance variables you can reserve space for them
using the newVar function. Instance variables are values that
are computed and vary from one instance of a model to another.
A transistor’s transconductance or base-emitter voltage would
be examples of instance variables. Storage for states and
instance variables will be deleted by ISSPICE4 during re-initial-
ization, as shown in the flow diagram on the next page.

If you have experience in writing SPICE 3 models, Appendix A
illustrates the differences between the way the XDL and SPICE
3 reference data. The code model XDL makes detailed simula-
tor knowledge less important than was the case in SPICE 3.
There is no need to be concerned with these differences unless
you are porting existing models.

The “.MOD” file is parsed into a “.C” file by the code model
compiler, CMPP. This process gives you simple access to
otherwise private parts of the XDL data structures. In addition,
several pointers and values are initialized in your main code
model function. This allows direct access to the ISSPICE4
CKTcircuit data structure. Appendix B shows how this was
done so you can add additional accessor macros.

ISSPICE4 separates the temperature dependent calculations
from the other load operations in order to reduce the computa-
tional overhead of the model. This is not done in the code model
XDL. If you have computationally intensive calculations that
only need to be performed once, they should be placed in the
INIT section of your code model.

See the
Capacitor
example in the
Examples
chapter for
more
information.

14

Steps in the simulation process are as follows:

Load each circuit “line”

Expand SPICE 2 polynomial controlled sources into ISSPICE4 arbitrary source
syntax (Convert E, F, G, and H elements to the B element)

Flatten subcircuit hierarchies

Load model parameters

For any requested simulation

Initialize simulation constants to default or optional values

Unsetup1, release storage from last simulation

Setup1, allocate storage and make “fast” pointers to model data

Calculate Temperature1 dependent coefficients for models

Do the Transient simulation

Transient specific initialization

DCOP1, Compute operating point if no UIC is specified on the .TRAN line
if OP fails, try gmin stepping
if OP fails, try source stepping

If UIC1 is present, find initial operating point
if initial OP fails, do DCOP, and apply UIC states at first transient iteration

Set Mode, INIT,...Tran

Load timestep

Set breakpoints1

Delete old breakpoints

Housekeeping (adjust storage, output, pause, abort, etc.)

If breakpoint, set the timestep

ISSPICE4 SYSTEM OVERVIEW

Interactive Entry Point
for Transient Analysis
Similar entry points exist for
the other analysis modes.

15

SIMULATION ALGORITHMS

Compute integration and predictor coefficients

Predict solution vector

Iterate1... Same steps for AC and DC analysis
Repeat until converged or too many iterations

Modify mode
Load Instance Data
Solve Matrix
Test convergence

If no convergence, scale back timestep

Local truncation error test1, select next timestep

Note 1: These steps iterate through all models and device instances.

Analog Simulation

This section provides descriptions for each analysis that is
supported by the CMSDK for analog code models. These
descriptions will focus on the elements of the code model you
will be responsible for in order to implement an XDL code
model. They are not meant to be a definitive discussion of the
analysis types.

DC Operating Point and DC Sweep
DC and swept DC analyses are steady-state forms of system
analysis. There is assumed to be no time dependence on any
of the sources within the system description. The simulator
algorithm subdivides the circuit into those portions which re-
quire the analog simulator algorithm and those which require
the event-driven algorithm. Each subsystem block is iterated to
solution, with the interfaces between analog nodes and event-
driven nodes iterated for consistency across the entire system.
Once stable values are obtained for all nodes in the system, the
analysis halts and the results may be viewed.

See the
ISSPICE4 User’s
guide for more
information

16

If your code model must handle this type of analysis it will be
necessary to provide code that correctly produces the voltages,
currents, and partial derivatives for all ports defined for your
device. You will also be responsible for evaluating any neces-
sary initial conditions that may apply to the code model.

This code will be called and evaluated for every iteration in a DC
type of analysis. This includes the transient DC operating point,
the small signal operating point and the DC sweep analyses.

AC - Small Signal Frequency Analysis
The AC analysis is a small signal, linear, frequency analysis. No
nonlinearities are taken into account during this analysis. The
analysis begins by performing a DC operating point. Inside
ISSPICE4 these DC voltages are used to determined the small
signal equivalent circuit for all active devices.

Inside a code model the DC operating point, as calculated by
the code, is inserted for the DC analysis, and can be used to
determine the characteristics of the AC response of the code
model. You are required to provide the AC gain, output with-
respect-to-input, of every port combination in your code model.
Special macros, as described in later chapters, are used to
accomplish this. To be compatible with future Pole-Zero analy-
sis capabilities, you must provide these calculations using a
complex frequency axis. By default, ISSPICE4 provides the
complex component of frequency, jω, for AC frequency calcu-
lations. Additional macros are provided to reduce the complex-
ity of these calculations.

Transient - Nonlinear Time Domain Analysis
A transient analysis begins by obtaining a DC solution to
provide an initial starting point for simulating time-varying
behavior. Once the DC solution is obtained, the time-depen-
dent aspects of the system are reintroduced, and the event-
driven and analog algorithms incrementally solve for the time-
varying behavior of the entire system. Inconsistencies in node
values are resolved by the two simulation algorithms such that
the time-dependent waveforms created by the analysis are
consistent across the entire simulated time interval. The result-

ANALOG SIMULATION

17

SIMULATION ALGORITHMS

ing time-varying descriptions of node behavior for the specified
time interval are all accessible.

It is your responsibility to provide the state variables, perform
the proper arithmetic, and provide an output, and partial deriva-
tive, for each port assigned to the code model for each time
point. The partial derivatives should be continuous through the
second derivative to provide proper convergence.

Digital Simulation

Digital circuit simulation differs from analog circuit simulation in
several respects. A primary difference is that a solution of
Kirchoff’s laws is not required. Instead, the simulator must only
determine whether a change in the logic state of a node has
occurred and propagate this change to connected elements.
Such a change is called an “event”.

When an event occurs, the simulator examines only those
circuit elements that are affected by the event. As a result,
matrix analysis is not required in digital simulators. By compari-
son, analog simulators must iteratively solve for the behavior of
the entire circuit because of the forward and reverse transmis-
sion properties of analog components. This difference results
in a considerable computational advantage for digital circuit
simulators, which is reflected in the significantly greater speed
of digital simulations.

Support is included for digital nodes that are simulated by a
general purpose event-driven algorithm. Because the event-
driven algorithm is faster than the standard SPICE matrix
solution algorithm, and because all “digital”, “real”, “int” and
User-Defined Node types make use of the event-driven algo-
rithm, reduced simulation time for circuits that include these
models can be anticipated compared to a simulation of the
same circuit using analog code models and nodes.

18

When creating a digital, event-driven, code model you are
responsible for; providing the proper DC operating points for all
outputs, and a state, strength, or output for each event. If an
event-driven code model is not going to post an event the
OUTPUT_CHANGED API call should be set to FALSE. Any
time the OUTPUT_CHANGED API call is set TRUE an output
value must be posted. More information can be found in the OR
gate example in the Examples chapter.

Node Bridge Models

ISSPICE4’S Code Model support allows you to develop models
that work under the analog simulation algorithm, the event-
driven simulation algorithm, or both. When event driven and
analog models are mixed in the same simulation, some method
must be provided for translating data between the different
simulation algorithms. Node bridges are code models devel-
oped for the express purpose of translating between the differ-
ent algorithms or between different User-Defined Node types.

When making a code model that process both analog and
event-driven algorithms you will have to provide the proper
mechanisms for translating the event-driven data into continu-
ous analog data or vise versa if the situation applies.

User-Defined Nodes

In addition to the Code Model features of ISSPICE4 that support
traditional analog and digital modeling, ISSPICE4 supports cre-
ation of “User-Defined Node” types. Although ISSPICE4 provides
built-in support for a 12 state digital simulation, the event-based
simulation capability is not limited to digital simulation. It is
available for all code models. This combination of the user-
defined signal and the event-based simulation allows ISSPICE4
to support mixed-level, as well as mixed-signal simulation and
indeed, to support application domains well beyond the electri-
cal domain.

MIXED MODE SIMULATION

19

SIMULATION ALGORITHMS

User-Defined Node types allow you to specify nodes that
propagate arbitrary data structures and data other than volt-
ages, currents, and digital states. A simple example application
of User-Defined Nodes is the simulation of a digital signal
processing filter algorithm. In this application, each node could
assume a real or integer value. This example is covered in more
detail in the Examples chapter. More complex applications may
define types that involve complex data such as digital data
vectors or even nonelectronic data.

ISSPICE4’s digital simulation is implemented as a special case of
this User-Defined Node capability where the digital state is
defined by a data structure that holds a Boolean logic level and
a strength value. The real and integer node types supplied with
ISSPICE4 are also more simplified examples of User-Defined
Node types.

When constructing a User-Defined Node you are responsible
for providing the functions to allocate, initialize, copy and
compare the data structures that make up your User-Defined
Node. Other functions are available to allow greater control
over the characteristics of the User-Defined Node. A mode
detailed description of a User-Defined Node can be found in the
Examples chapter.

[1] L. W. Nagel, “SPICE2: A computer Program to Simulate Semicon-
ductor Circuits”, ERL-M520, U.C. Berkeley, 1975, pg. 65

20

USER-DEFINED NODES

21

CODE MODEL DEVELOPMENTCode Model Development

Introduction

Traditionally, SPICE models are constructed from a set of
predefined primitive electrical and mathematical elements
provided with the simulator. The term “macromodeling” or
“behavioral modeling” is used to reference this style of model
development. As ISSPICE matured beyond SPICE 2G.6 additional
built-in elements were provided to allow greater modeling
flexibility. For example, ISSPICE3, introduced If-Then-Else
statements and in-line math equations. If-Then-Else statements
allow models to perform procedural decisions while math
equations greatly improve upon the limitations of SPICE 2
polynomials.

However, more complex models and system level blocks can
tax the efficiency and complexity bounds of even these powerful
elements. In addition, interfacing SPICE with other simulation
software is extremely difficult.

With Code Modeling Software Development Kit (CMSDK);
Intusoft lowers all of the aforementioned barriers and provides
the flexibility and power to add tremendous functionality to
ISSPICE4.

Throughout this chapter we will introduce the concept of Code
Modeling. Code Modeling is the process of creating new
primitive elements and functions using XDL (eXtended
Description Language).

22

THE CODE MODELING SDK

The Code Modeling SDK

The CMSDK consists of a set of tools that provide easy access
to the appropriate data structures and simulation routines for
the analog and event driven algorithms available in ISSPICE4.

The benefits of developing models using C code have not been
widely recognized. This is mainly due to the limited program-
ming and simulator support and extensive knowledge of SPICE
that is required. The CMSDK alleviates these difficulties. The
CMSDK works with additions to the ISSPICE4 core to tell the
simulator how to parse the code model netlist and how to call
C code that defines the model’s behavior (Figure on next page).
Code models should be seen as an extension to the set of
primitive devices offered in ISSPICE4. Support is provided for the
AC, DC, and Transient analyses for the analog models and DC
and Transient analyses for event driven models.

An XDL model is composed of two files. An interface specifica-
tion file, which describes the model’s connections and param-
eters, and a C file that describes the model’s behavior. The
CMSDK provides a comprehensive set of API calls to simplify
the model development process and to insulate you from the
underlying SPICE data structures.

A makefile is used to compile and link the code model. Compiler
and linker diagnostics aid in the debugging process as they
would for any application being developed under Microsoft
Visual C++. The result of a successful build is a code model
library (DLL) that can be accessed by ISSPICE4. Visual C++ then
provides the ability to examine variables, step through the
execution, and otherwise support debugging.

Once the model is performing correctly, the code model DLL
can be copied for use on other machines running ISSPICE4.
These steps are easily learned and only require a few minutes
to perform once the model description is written.

The CMSDK
requires
Windows NT or
Windows95 and
Microsoft Visual
C++ version 1.1
or 2.x.

The code
modeling
architecture is
based on the
XSPICE
program
developed by
the Georgia
Tech Research
Corp., a unit of
the Georgia
Institute of
Technology.

23

CODE MODEL DEVELOPMENT

Digital Logic
Simulator

SPICE 3F
Interactive
Simulation

Code Model
Interface
Routines

ISSPICE4
Native-
Mixed
Mode

Simulator

C Code for Model +
Text Interface

Specification File

User Defined
AHDL Models

Code Model SDK

Library of
Analog, Digital

and Mixed Mode
Models Supplied

with I SSPICE4

Accessor
Macros and
Functions

Tools: Compiler,
Makefile, Include

files, Example
Source Code

The following directory structure is set up by the ICAP/4Win-
dows software and the CMSDK. The CMSDK is placed below
the ICAPS directory (default: SPICE4) at the same level as the
IS directory holding the ISSPICE4 executable as shown below.

Spice4\
Circuits\
CMSDK\

bin\ - utilities
include\ - header files
src\ - batch files, routines to construct DLLs

cmcommon\ - source code for DLL (dll_main.c)
\obj - Lib files for common DLL routines

real\ - example of real code models and a real UDN
sample\ - misc. code model examples
simple\ - simple analog gain code model

\gain - gain.mod, ifspec.ifs, gain.c, gain!.c
...
all other DLL directories are placed at this level
DLL\ - DLL containing new models (MOD1, MOD2 ... MODn)

\MOD1 - Model Definition, IFS, and C files
\MOD2
\MODn

test\ test circuits
IS\ - ICAP/4 ISSPICE4 subdirectory
IN\ - ICAP/4 INTUSCOPE subdirectory
PR\ - ICAP/4 model library subdirectory
SN\ - ICAP/4 SPICENET subdirectory

NT or Windows95
Visual C++
1.1 or 2.0

DLL

DLL

Runtime link

Debugging Information

24

THE CODE MODELING SDK

The contents of the directories below the CMSDK directory are;

bin
Contains the CMPP preprocessing utility and the DLL makefile
(MakeDLL.Mak). CMPP is used to expand the code model
accessor macros and IFS file into the proper C code.
MakeDLL.Mak is used to run CMPP from within an nmake
compatible makefile.

doc
Miscellaneous documents describing various topics involved in
code model development.

test
Contains test circuits for the code models distributed with the
CMSDK.

include
Contains all of the necessary header files to build code model
DLLs.

src
Contains the makefiles and batch files that control the compi-
lation of code model DLLs. A batch file called Cleanxx.Bat (xx
represents the version of Visual C++ you are using) will remove
all compiler generated files for the currently active project. It
should be run from within Visual C++ from the TOOLS menu.
The remaining files; CMLtgt.mak, makefile.cml, mod_to_c.cml,
and mod_to_c.mak are used to run CMPP and construct the C
source from the model definition file.

Directories below SRC are used as working directories for new
DLLs. The models within a DLL are stored in directories below
the DLL directory. Each DLL directory will contain the Visual
C++ project file for the DLL and Visual C++ generated files, as
well as three support files, Ident.h, Modpath.Lst and/or
Udnpath.Lst file(s). These support files will be covered in the
Editing Support Files section later in this chapter.

25

CODE MODEL DEVELOPMENT

Adding Tools To Visual C++

Before we proceed to create code models there are two tools
that should be added to the Tools menu of your Visual C++
package. For instructions about adding tools to your Visual C++
work space please consult the documentation that accompa-
nies your version of Visual C++.

Clean DLL
This tool is not necessary for creating a code model DLL. It is
used to delete all extraneous files from the DLL directory you
are working on. If you wish to edit this file to provide additional
clean up please feel free to do so. The following settings should
be used if you wish to add this tool to the Tools menu.

Visual C++ version 1.1
Command Line - path to (including) Clean11.Bat
Menu Text - Clean DLL
Arguments - $ProjDir
Check the Redirect to Output Window check box.

Visual C++ version 2.0
Menu Text - Clean DLL
Command - path to (including) Cleanout.Bat
Arguments - $ProjDir
Check the Redirect to Output Window check box.

The batch file for the command lines described above can be
found in the SRC directory of the CMSDK.

26

Convert Mod to C
This tool is required in order to compile a code model DLL. It
calls the nmake utility provided with Visual C++ and provides,
as an argument, the makefile containing the rules for converting
the model definition files (.MOD) into standard C source files
(.C). The makefile uses the CMPP utility provided as part of the
CMSDK. The following settings should be used when adding
the tool to the Tools menu.

Visual C++ version 1.1
Command Line - path to (including) Nmake.Exe
Menu Text - Convert MOD to C
Arguments - /f ..\MOD_to_C.MAK
Initial Directory - $ProjDir
Check the Redirect to Output Window check box.

Visual C++ version 2.0
Menu Text - Convert MOD to C
Command - path to (including) Nmake.Exe
Arguments - /f ..\MOD_to_C.MAK
Initial Directory - $ProjDir
Check the Redirect to Output Window check box.

Nmake is located in the BIN directory of your Visual C++
installation.

ADDING TOOLS

27

CODE MODEL DEVELOPMENT

Creating Code Models

Code Models are created using a combination of CMSDK
preprocessing tools and Visual C++. A code model project will
consist of a Visual C++ project, an external makefile
(mod_to_c.mak), and a set of definition files. The external
makefile, mod_to_c.mak, is run by nmake prior to compiling a
code model DLL. This makefile translates the definition files into
C code which the Visual C++ compiler uses to construct the final
code model DLL. This makefile appears in your Visual C++
Tools menu as “Convert MOD to C”. The basic steps required
to create, compile the DLL containing Code Models or User-
Defined Nodes are;

• Create the project DLL directory and any model directories

• Edit support files

• Opening the project file

• Create the Interface Specification file (IFS)

• Create the model definition file (MOD)

• Run “Convert Mod To C” to construct the proper C files

• Build the Windows DLL containing the new code model

The explanations that follow will assume that you have a
working knowledge of Microsoft Visual C++, version 1.1 or 2.x,
and are familiar with the Windows 95 or Windows NT operating
system.

28

Creating A Project Directory

The first step in creating a code model, or User-Defined Node,
is to create the DLL directory. This directory must be placed
below the SRC subdirectory within the CMSDK directory struc-
ture. The easiest way to create the DLL directory is to;

• Use the File Manager to duplicate the contents of the
Simple subdirectory provided with the CMSDK.

• Change the name of the Visual C++ project files in the
duplicated directory.

Editing Support Files

The next step is to open the Modpath.Lst file and enter the
names of all model directories that will be associated with the
new DLL. These directories must be located below your new
DLL directory. The format of the file is simple and consists of the
name of each model directory on a new line with a “\” after each,
except the last directory named in the file.

If the DLL is set up to contain user defined nodes, then a
Udnpath.Lst file must also be present in the DLL directory. The
format of this file is the same as the Modpath.Lst file except that
the actual filename in the UDN directory is the name on each
line as well.

The remaining support file is ident.h. This file contains reserved
definitions for licensing and an ID string. The licensing defini-
tions are reserved for future use and should not be altered. The
ID string can contain any text string up to 255 characters. This
string will be embedded into the DLL.

CREATING A PROJECT DIRECTORY

29

CODE MODEL DEVELOPMENT

Opening The Project File

Start Visual C++ and open the project file located in the DLL
directory for the DLL you wish to work on. If you copied an
existing project most of the defaults for the project will be set
with the following exceptions;

Debug Information
The debug settings described in the Setting Up The Debug
Environment section will have to be changed depending on the
model and DLL you are working on. All test circuits are located
in the TEST directory. This directory is located at the same
directory level as the SRC directory.

Output Generation
When using Visual C++ 2.0 the output of the build should be
directed to the IS directory located under the SPICE4 directory.
This will facilitate debugging the new DLL. For those using
Visual C++1.1, a copy of SPICE4.EXE will have to be placed in
the project’s DLL directory.

Creating The Interface Specification File

The Interface Specification File is a text file that describes, in a
tabular format, all the information needed to interface the code
model to ISSPICE4. This information includes all nodal connec-
tions (ports), all model parameters, their default values, and the
name of the model itself. This file is read by the CMPP utility and
translated into C code for implementing the interface between
the code model and ISSPICE4. In order for the interface to work
correctly the format of the Interface Specification File template
must be followed.

An example IFS file is given next. The example is followed by
detailed descriptions of each of the entries.

30

NAME_TABLE:
C_Function_Name: ucm_xfer
Spice_Model_Name: xfer
Description: “arbitrary transfer function”

Port Table
Port Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

Parameter Table
Parameter_Name: in_offset gain num_coeff
Description: “input offset” “gain” “numerator coeff”
Data_Type: real real real
Default_Value: 0.0 1.0 -
Limits: - - -
Vector: no no yes
Vector_Bounds: - - [1 -]
Null_Allowed: yes yes no

Parameter Table
Parameter_Name: den_coeff out_ic
Description: “denominator coeff” “output initial value”
Data_Type: real real
Default_Value: - -
Limits: - -
Vector: yes no
Vector_Bounds: [1 -] -
Null_Allowed: no yes

Parameter Table
Parameter_Name: denorm_freq
Description: “denormalized corner freq.(radians)”
Data_Type: real
Default_Value: 1.0
Limits: -
Vector: no
Vector_Bounds: -
Null_Allowed: yes

CREATING THE INTERFACE SPECIFICATION FILE

31

CODE MODEL DEVELOPMENT

Example; Device Call Line and Model
A12 1 2 Cheby3K
.Model Cheby3K s_xfer(in_offset=0.0 gain=1.0 num_coeff=[1.0]
+ den_coeff=[1.0 1.42562 1.51620])

The Name Table
The name table is preceded by the “Name_Table:” keyword. It
defines the code model’s C function name, the name used in a
.MODEL statement, and an optional description. The following
sections define the valid fields that may be specified in the
Name Table.

C Function Name
The C function name is a valid C identifier which is the name
of the function for the code model. It is preceded by the
“C_Function_Name:” keyword followed by a valid C iden-
tifier. To reduce the chance of name conflicts, it is recom-
mended that user-written code model names use the prefix
“ucm_” for this entry. Thus, in the example given above, the
model name is “xfer”, but the C function is “ucm_xfer”. Note
that when you subsequently write the model function in the
Model Definition File, this name must agree with that of the
function (i.e., “ucm_xfer”), or an error will result in the linking
step.

SPICE Model Name
This parameter is the model TYPE parameter that is
required on a .MODEL line. It may or may not be the same
as the C function name. It is preceded by the
“Spice_Model_Name:” keyword. For the IFS file given the
.MODEL line would be

.Model mytrans xfer(param1=#, ..)

Description
The description (C string literal) is used to describe the
purpose of the code model. It is preceded by the “Descrip-
tion:” keyword.

Please refer to
the Design
Entry & Data
Analysis
manual for
details about
interfacing your
new code
model to
SpiceNet.

The name used
in the
Spice_Model_Name
field, must be
entered in lower
case.

32

The Port Table
The port table is preceded by the “Port_Table:” keyword. It
defines the set of ports available to the code model. The
following sections define the valid fields that may be specified
in the port table.

Port Name
The port name is preceded by the “Port_Name:” keyword
and followed by the name of the port. This port name is used
to obtain and return input and output values within the
model function. This will be discussed in more detail in the
next section.

Description
The description string is used to describe the purpose and
function of the code model. It is preceded by the “Descrip-
tion:” keyword followed by a C string literal.

Direction
The direction of a port specifies the intended data flow
direction of the port. The direction must be either “in”, “out”,
or “inout”. It is preceded by the “Direction:” keyword.

Default Type
The Default_Type specifies the expected signal type. The
following table summarizes the allowable port types:

Type Description Valid
Directions

d digital in or out
g conductance (VCCS) inout
gd differential conductance (VCCS) inout
h resistance (CCVS) inout
hd differential resistance (CCVS) inout
i current in or out
id differential current in or out
v voltage in or out
vd differential voltage in or out
vnam voltage source name in
<identifier> user-defined type in or out

CREATING THE INTERFACE SPECIFICATION FILE

33

CODE MODEL DEVELOPMENT

Allowed Types
A port must specify the types it is allowed to assume. The
type names must be taken from those listed in Port Types
table. The list of type names are separated by a blank or
comma and delimited by square brackets, e.g. “[v vd i id]”
or “[d]”). See the ISSPICE4 documentation for information on
how to override the default port type on the

Vector
A port, which is a vector, can be thought of as a bus. The
Vector field is preceded with the “Vector:” keyword and
followed by a boolean value: “YES”, “TRUE”, “NO” or
“FALSE”. The values “YES” and “TRUE” are equivalent
and specify that this port is a vector (may have 1 or more
connections). Likewise, “NO” and “FALSE” specify that the
port is not a vector. Vector ports must have a corresponding
vector bounds field that specifies the minimum and maxi-
mum size of the vector port.

Vector Bounds
If a port is a vector, limits on its size must be specified in this
field. The vector bounds field specifies the upper and lower
bounds on the size of a port. It is preceded by the
“Vector_Bounds:” keyword and followed by a range of
integers (e.g. “[1 7]” or “[3, 20]”). The lower bound of the
vector specifies the minimum number of connections to this
port; the upper bound specifies the maximum number of
connections. If the range is unconstrained, or the associ-
ated port is not a vector, the vector bounds should be
specified by a hyphen (“-”). Using the hyphen convention,
partial constraints on the port may be defined (e.g., “[2, -]”
indicates that the least number of ports allowed is two, but
there is no maximum number).

Null Allowed
In some cases, it is desirable to permit a port to remain
unconnected. The Null_Allowed field specifies whether this
constitutes an error condition. The Null_Allowed field is
preceded by the “Null_Allowed:” keyword and followed by
a boolean constant: “YES”, “TRUE”, “NO” or “FALSE”. The

34

values “YES” and “TRUE” are equivalent and specify that
it is legal to leave this port unconnected. “NO” or “FALSE”
specify that the port must be connected. If the Null_Allowed
is TRUE, and the port is unconnected, the keyword “NULL”
must be inserted on the code model call line, for example,
“A1 1 2 NULL 3 4 Mygain”.

The Parameter Table
The parameter table is preceded by the “Parameter_Table:”
keyword. It defines the set of model parameters available to the
code model. The following sections define the fields that may be
specified in the parameter table.

Parameter Name
The parameter name is the name of the model parameter
used on SPICE .MODEL line. It is preceded by the
“Parameter_Name:” keyword.

Description
The description string is used to describe the purpose of the
parameter. It is preceded by the “Description:” keyword.

Data Type
The Data_Type field determines the type of value the
model parameter will accept. It is preceded by the keyword
“Data_Type:” and is followed by one of the following:
boolean, complex, int, real, and string.

Default Value
If the Null_Allowed field is “TRUE” for this parameter, then
a default value may be specified. This value is supplied in
the event that the .MODEL line does not supply a value.
The default value must be of the correct type. The Default
Value field is preceded by the “Default_Value:” and is
followed by a numeric, boolean, complex, or string literal
(usually a filename).

CREATING THE INTERFACE SPECIFICATION FILE

35

CODE MODEL DEVELOPMENT

Limits
Integer and real parameters may be constrained to accept
a limited range of values. A range is specified by a square
bracket followed by a value representing a lower bound
separated by a space from another value representing an
upper bound and terminated with a closing square bracket
(e.g.”[0 10]”). The lower and upper bounds are inclusive.
Either the lower or the upper bound may be replaced by a
hyphen (“-”) to indicate that the bound is unconstrained
(e.g. “[10 -]” is read as “the range of values greater than or
equal to 10”). For a totally unconstrained range, a single
hyphen with no surrounding brackets may be used. The
parameter value limit is preceded by the “Limits:” keyword.

Vector
The Vector field is used to specify whether a model param-
eter is a vector (several values for one model parameter) or
a scalar. Like the Port_Table vector field, it is preceded by
the “Vector:” keyword and followed by a boolean value.
“TRUE” or “YES” means that the parameter is a vector.
“FALSE” or “NO” means that it is a scalar.

Vector Bounds
The valid sizes for a vector model parameter are specified
in the same manner as are port sizes (see Vector Bounds
section).

Null Allowed
The Null_Allowed field is preceded by the “Null_Allowed:”
keyword and followed by a boolean literal. A value of
“TRUE” or “YES” means that it is valid for the corresponding
model parameter to be omitted. If the parameter is omitted,
the default value is used. If there is no default value, an
undefined value is passed to the code model, and the
PARAM_NULL() macro will return a value of “TRUE” so
that defaulting can be handled within the model itself. If the
value of Null_Allowed is “FALSE” or “NO”, then the simula-
tor will flag an error if the model parameter value is omitted.

36

Static Variable Table
The static variable table is preceded by the “Static_Var_Table:”
keyword. It defines the set of valid static variables available to
the code model. These are variables whose values are retained
between successive invocations of the code model by the
simulator. The following sections define the valid fields that may
be specified in the Static Variable Table.

Name
The static variable name is a valid C identifier that will be
used in the code model to refer to this static variable. It is
preceded by the “Static_Var_Name:” keyword.

Description
The description string is used to describe the purpose of the
static variable. It is preceded by the “Description:” keyword.

Data Type
The static variable’s data type is specified by the Data_Type
field. The Data_Type field is preceded by the keyword
“Data_Type:” and is followed by a valid data type: boolean,
complex, int, real, string and pointer.

Note that pointer types are used to specify vector values; in
such cases, the allocation of memory for vectors must be
handled by the code model through the use of API functions.
Such allocation must only occur during the initialization cycle of
the model (which is identified in the code model by testing the
INIT macro for a value of TRUE). Otherwise, memory will be
unnecessarily allocated each time the model is called.

Shown next is an example of allocating memory to be refer-
enced by a static pointer variable “x”. The example assumes
that the value of “size” is at least 2, else an error would result.
The references to STATIC_VAR(x) that appear in the example
illustrate how to set the value of, and then access, a static
variable named “x”. In order to use the variable “x” in this
manner, it must be declared in the Static Variable Table.

CREATING THE INTERFACE SPECIFICATION FILE

The newVar()
API call allows
you to allocate
memory for
static “instance”
variables
without
referencing the
IFS file.

37

CODE MODEL DEVELOPMENT

/* Define local pointer variable */
double *local_x;

/* Allocate storage to be referenced by the static
variable x. Do this only if this is the initial call
of the code model. */
if (INIT == TRUE)
STATIC_VAR(x) = CALLOC(size, sizeof(double));

/* Assign the value from the static pointer value to the
local */

/* pointer variable. */
local_x = STATIC_VAR(x);

/* Assign values to first two members of the array */
local_x[0] = 1.234;
local_x[1] = 5.678;

A more flexible method of allocating and using memory for
these types of variables is to use the newVar API call. The
newVar API call allows you to allocate and use static “instance”
variables without the need to specify static variables in the IFS
file. Please refer to the Capacitor example in the Examples
chapter for more details.

Creating The Model Definition File

The Model Definition file is a C source file that defines a code
model’s behavior. Within this file input, output, model
parametersn and simulator-specific information is handled
through a set of API calls. These API calls, in conjunction with
standard C source code, define the code model’s behavior.

A complete list of the available API calls is available in the API
Calls chapter. In general, you will use the following API calls
most frequently.

PARAM(arg) PARAM_SIZE(arg) PARAM_NULL(arg)
INPUT(arg) INPUT_SIZE(arg) OUTPUT(arg)
OUTPUT_SIZE(arg) AC_GAIN(arg,arg) PARTIAL(arg,arg)

38

The arguments, arg, are fields specified in the IFS file.

All accessor macros are resolved by the CMPP preprocessor
into members of a private data structure called ARGS. While
you can dereference this data using the debugger, it is not likely
to make much sense and it is not a supported part of the code
model XDL. You should limit your debugging to the items
available within your model definition file.

The following pseudo code illustrates the basic format that an
analog code model definition file will have.

if(INIT) {
// do setup, then
// calculate temperature and other
// coefficients that do not change
// usually those dependent on ".options"
}

// initialize "fast" pointers
switch(ANALYSIS) {
case MIF_AC:
// do AC analysis, use both real and imaginary
// frequency for future compatibility
break;

case MIF_DC:
// do DC analysis
break;

case MIF_TRAN:
if(isMODEINITTRAN) {
// the first iteration of the first transient
// time point
}

if(isMODEINITPRED) {
// the first iteration of each time point
// good for debugging
}

// do general transient analysis processing
// pass through here for every iteration
break;

}

CREATING THE MODEL DEFINITION FILE

39

CODE MODEL DEVELOPMENT

INIT
The initialization of all code models is performed in the ISSPICE4
setup routine. The INIT macro is used to detect the initialization
call. This is the location were one time operations should be
performed (i.e. circuit temperature dependence, internal coef-
ficient calculation, etc.) Also, during initialization you must
allocate memory for state variables using the newState() API
call. These states are provided as a pointer to the data accepted
by ISSPICE4, in other words double *state[]. The dimension of
*state[] is 1 greater than the order of integration. Hence, for
Trapezoidal integration, which has an order of 1, the dimension
would be 2. This pointer is marched, in time, automatically. This
means that the first position in the pointer is always the current
state, the second position is the next state and so on. This
allows you to quickly access the current and last state pointers.
The argument to newState() is the number of pointers you
need. For instance, newState(2) will create a 2 pointers.

Initializing FAST pointers
After allocating the state pointers, the next step is to initialize
them. Assuming you are interested in a current and charge for
a particular code model this would be done as;

double *current, *charge, *currentlast;

current = thisSTATEptr(0);
charge = thisSTATEptr(1);
currentlast = lastSTATEptr(0);

These two macros, thisSTATEptr and lastSTATEptr, are pro-
vided for access to the elements of the state pointers allocated
by newState(). The first macro, thisSTATEptr, returns a pointer
to the array of current states. The second macro, lastSTATEptr,
returns a pointer to the array of previous states.

These states will be marched in time, automatically, as the
simulation progresses. Hence, thisSTATEptr always points to
the current state value and lastSTATEptr always points to the
previous state value.

You may wish
to calculate
some values for
use in
subsequent
iterations. To
reserve storage
for this
“instance” data,
use the
newVar()
function.

State variables
are used during
integration.

This array of
pointers is
freed by
ISSPICE4 during
its unsetup
routine. There
is no need for
you to free this
memory.

40

Analysis
Once allocation and initialization have taken place for state
variables, the code model must process the different analysis
modes. In the pseudo-code provided this is done with a switch-
case arrangement. A chain of if-elseif-else statements could
have been used as well.

DC Analysis (MIF_DC)
The DC analysis is detected by comparing the return of the
ANALYSIS macro with the MIF_DC definition. In this section
you must calculate each output as a function of the inputs. For
example;

OUTPUT(out) = INPUT(in) * r_shunt;

You must also calculate the partial derivative of each output
with respect to all inputs. For example;

PARTIAL(out,in) = r_shunt.

This section of the code (MIF_DC) will be called repeatedly
during a DC analysis until the outputs converge. See MIF_TRAN
for more information.

AC Analysis (MIF_AC)
The AC analysis is detected by comparing the return of the
ANALYSIS macro with the MIF_AC definition. In this section all
AC analysis operations must be performed. Calculations de-
pending on operating point can be obtained using the same
macros as in the DC analysis (See MIF_DC).

By default, the frequency will be imaginary with no real part;
however, if you want your model to work for the pole zero
analysis you must handle complex frequency. This is done
using the realFreq and imagFreq API calls.

If you have no frequency dependent parts, you must output the
small signal gain which is the same as the PARTIAL calculated
in the DC analysis, for example:

ISSPICE4 will
make the
appropriate
entries in the
matrix and
solution vector
depending on
the port types
specified in the
IFS file.

CREATING THE MODEL DEFINITION FILE

41

CODE MODEL DEVELOPMENT

result.real = r_shunt;
result.imag = 0;
AC_GAIN(out,in) = result;

Transient Analysis (MIF_TRAN)
The Transient analysis is detected by comparing the return of
the ANALYSIS macro with the MIF_TRAN definition. In this
section you should process all transient analysis related behav-
ior.

The initial time point for the transient analysis can be detected
by using the isMODEINITTRAN API call. This will allow you to
set initial conditions when necessary. For example;

switch(ANALYSIS){
....

case(MIF_TRAN):
if(!PARAM(ic) && isMODEINITTRAN)
OUTPUT(cap) = PARAM(ic);

else{
// process necessary info if no ic

}
...

This code fragment demonstrates the use of the
isMODEINITTRAN macro. The return value, and the presence
of an “ic” parameter in the model’s .Model statement, will
establish the output initial conditions. The else if clause allows
proper initialization for the case when no ic is present.

During the remainder of the transient analysis you must provide
an output and its partial derivatives for the current time and time
step, based on the operating point for the current time and the
history of inputs. The convergence of your code model will
depend on the ability to create continuous partial deriva-
tives. Convergence is determined by the simulator for each
value that is integrated.

For states that must be integrated, or differentiated, you must
call stateIntegrate(), passing the integrand, integral, and a
storage pointer to receive the partial derivative.

42

Integration takes place when the integral is allowed to vary and
the integrand is kept constant. For example,

cur = *current = INPUT(cap);

stateIntegrate(current,charge,&partial,currentlast);

*current = cur;

ISSPICE4 will iterate to a solution until *current is equal to cur
producing charge for each iteration.

Differentiation takes place when the integrand is allowed to vary
and the integral is kept constant. For example,

chrg = *charge = vcap * capvalue;

stateIntegrate(current,charge,&partial,currentlast);

*charge = chrg;

ISSPICE4 will iterate to a solution until *charge is equal to chrg
producing current for each iteration.

The matrix being solved during these iterations is a set of small
signal sensitivities superimposed on a large signal operating
point. The partial derivative provides the small signal model
while the outputs are the exact solution. You will get the best
results; that is, the fewest number of iterations to con-
verge, if you make sure the partial derivatives are continu-
ous through the second derivative and you limit very large
changes in output to sensible values. For instance, avoid
hard limiters that have no partial derivatives, and don’t allow
outputs to be off the wall, like millions of amps in a general
purpose diode.

It is possible for the simulator to arrive at a correct solution with
an incorrect partial derivative. This is one of the more difficult
problems to debug. You might want to keep track of the number
of iterations your model needs to converge as part of your
debugging code. Most problems converge in 2 to 6 iterations;

CREATING THE MODEL DEFINITION FILE

The integration
and
differentiation
techniques are
covered in the
Capacitor
example in the
Examples
chapter.

Q = i d

i = dQ
dt

43

CODE MODEL DEVELOPMENT

more than that indicates problems in computing the partial
derivatives. By using the isMODEINITPRED macro, which
detects the first iteration of each timepoint, you can establish
special code (iteration counter), as well as set break points to
investigate the convergence of your code model. See the s_xfer
(Laplace) code model example.

Memory Allocation
Memory allocated with the newSTATE and newVar API calls,
will be freed by ISSPICE4 during the unsetup routine at the end
of the simulation. Therefore, there is no need for you to free
memory if you use these API calls to allocate the memory.

Building The Code Model DLL

Building a code model DLL requires two steps. First the CMPP
preprocessing utility is run to convert the .MOD file to a .C file.
Then, Visual C++ is used to compile the resulting .C files.

If the project has been copied from an example, then run CMPP
by simply selecting the “Convert MOD to C” tool from the Visual
C++ Tools menu. Any time a .MOD file has been modified it
must be saved and “Convert Mod to C” must be run. This tool
is assigned the following options;

executable - nmake.exe
menu text - Convert MOD to C
command line - /f ..\mod_to_c.mak
working dir - $ProjDir

If you have created your own project this should be added to the
Tools menu.

Once compiled, you can execute the new DLL in one of two
ways.

• First, use Alt+Tab to switch to the Program Manager and
run ICAPS. Select the test circuit from the TEST directory
located under the CMSDK directory structure. Run a simu-
lation as you normally do.

See the Adding
Tools section
for more details.

44

• The second method is to execute Spice4.Exe directly from
within the Visual C++ environment. To do this you will have
to set the proper options for the version of Visual C++ you
are using. Please refer to the Setting-Up The Debug
Environment section for more information.

Building A DEBUG DLL

Building the debug version of the DLL is as simple as building
the release version. The first step is to select the DEBUG build
option for the version of Visual C++ you are using. Then compile
the project as you would for the release version.

Setting Up The Debug Environment

After building the debug version of the code model DLL you
must set several options to establish a debugging environment
within Visual C++. If you are using, or have copied, one of the
examples provided with the CMSDK, these steps are not
necessary. With one exception, if you are using Visual C++ 1.1
you must perform the first step listed below.

Visual C++ 1.1
There are two steps to perform in order to create a debugging
environment under Visual C++ 1.1.

• Copy SPICE4.Exe and CML.DLL into the DLL directory of
the code model you are debugging.

• Select Debug... from the Options menu. In this dialog file in
the name of the executable and the path and name of the
file you will use to debug the code model DLL.

Visual C++ 2.x
To establish a debug environment for verison 2.x;

• Select Settings... from the Project menu.

BUILDING A DEBUG DLL

45

CODE MODEL DEVELOPMENT

• Select both the Debug and Release items from the Settings
for: field.

• Select the Debug tab and fill in the following information;

Executable for Debug Session: path to, and name of, the
ISSPICE4 executable that you will use for debugging. Typically
this will be the version that was installed into the SPICE4\IS
directory when the CMSDK was installed.

Program Arguments: path to, and name of, the circuit file to
use for debugging the code model DLL.

• Select the Link tab and fill in the following information;

Output file Name: Enter the path to the location of the ISSPICE4
executable and the name of the DLL. By default this would be
\SPICE4\IS\dllname.

Accessing A Code Model in I SSPICE4

The syntax for calling a code model from an ISSPICE4 netlist is
as follows:

Format: Aname N1 N2... value

Examples: A1 1 2 Mygain
.model Mygain gain(...)

• All code models use the reference designation letter “A”.
• All code models require a .model statement

Note: once the proper ICAP/4 model library entries and SPICENET

symbol are created, a new schematic database can be com-
piled. You will then be able to access your new code model
directly from the SPICENET schematic entry program. The follow-
ing chapters can be explored for more information:

• Code Model syntax: ISSPICE4 User’s Guide, chapter 9

46

USER-DEFINED NODES

• Adding a Code Model to a model library: Design Entry and
Data Analysis manual, chapter 5

• Relationship between the code model call line (i.e. A1 1 2
Mygain) and the .Model line (i.e. .Model Mygain
gain(...)): ISSPICE4 User’s Guide, chapter 8

User-Defined Nodes

User-Defined nodes (UDN) provide a method of processing a
data type other than analog or digital within the ISSPICE4
simulator. All User-Defined Nodes operate using the event-
driven algorithms of ISSPICE4. Currently, the digital and real
node types provided with ISSPICE4 are UDNs. In order to
interface a node that uses a UDN data type to a node that uses
the analog algorithm, a node bridge must be constructed. Node
bridges are special code models that translate different data
types, for example from digital event-driven data into continu-
ous time analog data. For more information please refer to the
Examples chapter.

User-Defined Nodes are created in a manner similar to the code
models discussed previously. The basic steps are listed below;

• Create a directory within the desired DLL for the UDN

• Edit any project specific support files

• Open the project file

• Create the UDN definition file

• Build the Windows DLL containing the new code model

47

CODE MODEL DEVELOPMENT

UDN Directory

A directory for the UDN definition file should be created in the
DLL directory for which the UDN applies. For instance, if you are
creating an integer type UDN to work with a set of integer type
code models, the UDN directory should be placed with the
integer code models. For clarity, the UDNs should be separated
from the models within the DLL. For example;

SRC
\INTMODS

\MULT
\GAIN
\UDNINT

In this example, a DLL called INTMODS is constructed with
code models called MULT and GAIN. The UDNINT directory is
where the UDN definition file for the integer code models in
INTMODS is placed.

Editing UDNpath.Lst

After creating the directory to hold the UDN definition file the
directory name and definitions filename must be added to the
DLL’s UDNpath.Lst file. This file is located in the DLL directory.
Each UDN directory and definition file filename should be
stated on a separate line. In general, there will be only one type
of node. However, if you are going to group multiple types
together in one DLL, separate lines must be used. At the end of
every line, except the last, a “\” should be inserted. This is used
as a continuation symbol during preprocessing. The following
example demonstrates the contents of UDNpath.Lst for integer
and real user-defined node types.

UND\UDNINT.C \
UND\UNDREAL.C

This file can be found in the Samples directory of the CMSDK.

48

UDN Project File

UDNs are generally part of an existing project. Therefore, you
will seldom have a project that contains only a UDN. Aside from
editing the UDNpath.Lst file, adding a UDN definition file to a
project is straight forward and no more complicated than adding
a standard C file to a Visual C++ project. Please consult the on-
line help for your version of Visual C++ for more details.

User-Defined Node Definition File

Unlike the Model Definition File which uses CMPP to translate
accessor macros, the User-Defined Node Definition file is a
pure C language file. The User-Defined Node Definition File
(name.c) defines the C functions which implement operations
on user-defined nodes. This file uses macros to isolate you from
data structure definitions. The macros are defined in a standard
header file (EVTudn.h), and translations are performed by the
standard C preprocessor.

A complete list of the available macros and functions for UDNs
can be found in the API Calls chapter. The following pseudo
code illustrates a typical UDN. A complete example is given in
the Examples Chapter.

void udn_int_create(CREAT_ARGS)
{

// Malloc space for an UDN data structure
}
void udn_int_dismantle(DISMANTLE_ARGS)
{

// free internally malloc'ed variables
}

USER-DEFINED NODE DEFINITION FILE

49

CODE MODEL DEVELOPMENT

void udn_int_initialize(INITIALIZE_ARGS)
}

// Initialize UDN data structure
}
void udn_int_invert(INVERT_ARGS)
{

// Invert the UDN node value
}
void udn_int_copy(COPY_ARGS)
{

// Copy the structure
}
void udn_int_resolve(RESOLVE_ARGS)
}

// Assign the result for node connections
}
void udn_int_compare(COMPARE_ARGS)
}

// Compare the structures
}
void udn_int_plot_val(PLOT_VAL_ARGS)
}

// Output a value for the UDN data structure
}
void udn_int_print_val(PRINT_VAL_ARGS)
}

// Allocate space for the printed value
// Print the value into the string

}

void udn_int_ipc_val(IPC_VAL_ARGS)
}

// send data over an established ipc channel
}

The arguments to these functions are macros that are ex-
panded into the correct argument list. At the bottom of the UDN
definition file is the data structure that is used to access these
functions. The Evt_Udn_Info_t data structure contains the

50

BUILDING A UDN

name of the node type, a description of the node type, and
pointers to the functions defining the node type. An example of
this structure for an integer type node is given below.

Evt_Udn_Info_t udn_int_info = {
�int�,
�integer valued data�,
udn_int_create,
udn_int_dismantle,
udn_int_initialize,
udn_int_invert,
udn_int_copy,
udn_int_resolve,
udn_int_compare,
udn_int_plot_val,
udn_int_print_val,
udn_int_ipc_val

};

Building A UDN

Building the DLL containing the UDN is no different than
building any other Visual C++ project. Unlike the code model,
the UDN does not need special preprocessing. Therefore,
there is no need to run an external processing program such as
CMPP.

51

API CALLS
API Calls

What Are API Calls?

The CMSDK includes several different types of API Calls:

• Accessor Macros (capitalized API calls with the exception
of macros used within user-defined nodes) preprocessed
by a CMSDK utility

• API calls beginning with
cm_ - code model functions
is - macros used to translate SPICE3 models
ckt - macros that return circuit related data
udn - functions used within user-defined nodes

Accessor macros are similar to traditional C macros in their use,
however, they are not defined in the same way as traditional C
macros. An accessor macro, used within a Code Model defini-
tion file, is expanded into the correct C code by the CMPP
compiler provided with the CMSDK. For example, to obtain a
parameter value from the .Model line of a code model you
simply use the following syntax;

param = PARAM(gain)

Here, param is the variable used within the code model defini-
tion file and gain is the name of the parameter (as defined in the
IFS file) for which a value is to be obtained. The accessor macro

52

WHAT ARE API CALLS?

PARAM retrieves the correct value and sets param equal to it.
If this accessor macro was not available the following syntax
would be necessary;

param = private->param[0]->element[1]->rvalue;

You can easily see that accessor macros are much easier to
use. Accessor macros, and their automated expansion into
correct C code, provide maximum flexibility when using input,
output, and simulator specific information in the code model
definition file.

Arguments to most of the accessor macros are parameter
names or port names as defined in Interface Specification Files.
If the corresponding port or parameter is a vector type param-
eter the argument is a bracket delimited index, port[i]. It is also
possible for the argument to be an expression involving other
accessor macros. For instance;

OUTPUT(out[PORT_SIZE(out)]-1])

All accessor macros, with the exception of ARGS, resolve to
lvalues. That is, they can be assigned a value. For example;

OUTPUT(out1) = 0.0

In this example, the accessor macro, OUTPUT, accepts an
argument, out1, creating access to output port out1. The real
value, 0.0, is then assigned to the output port.

The remaining API calls are defined as starndard macros and
functions. The header file containing prototypes to these func-
tions is automatically inserted into the Model Definition File.

The following tables list all of the available API calls, by
functionality. Following these tables is an alphabetic list of all
API functions with a complete description.

53

API CALLS

API Calls

Circuit
Name Type Args Description
ARGS Mif_Private_t <none> Standard argument to all code model func-

tions
CALL_TYPE enum <none> Type of model evaluation call: ANALOG or

EVENT
INIT Boolean_t <none> Is this the first call to the model?
ANALYSIS enum <none> Type of analysis: DC, AC, TRANSIENT
TIME double <none> Current analysis time (same as T(0))
T(n) double index Current and previous analysis times (T(0) =

TIME = current analysis time,T(1) = previous
analysis time)

RAD_FREQ double <none> Current analysis frequency in radians per sec-
ond

TEMPERATURE double <none> Current analysis temperature

Parameter
Name Type Args Description
PARAM CD name[i] Value of the parameter
PARAM_NULL Boolean_t name[i] Was the parameter not included on the SPICE

.model card?
PARAM_SIZE int name Size of parameter vector

Port Data
Name Type Args Description
PORT_NULL Mif_Boolean_t name Has this port been specified as unconnected?
PORT_SIZE int name Size of port vector
LOAD double name[i] The digital load value placed on a port by this

model.
TOTAL_LOAD double name[i] The total of all loads on the node attached to

this event-driven port.

Input
Name Type Args Description
INPUT double or void * name[i] Value of analog input port, or value of structure

pointer for User-Defined Node port.
INPUT_STATE enum name[i] State of a digital input: ZERO, ONE, or UN-

KNOWN.
INPUT_STRENGTH enum name[i] Strength of digital input: STRONG, RESIS-

TIVE, HIIMPEDANCE, or UNDETERMINED
INPUT_TYPE char * name[i] The port type of the input

54

Output
Name Type Args Description
OUTPUT double or void * name[i] Value of the analog output port or value of

structure pointer for User-Defined Node port.
OUTPUT_CHANGED Boolean_t name[i] Has a new value been assigned to this event-

driven output by the model?
OUTPUT_DELAY double name[i] Delay in seconds for an event-driven output
OUTPUT_STATE enum name[i] State of a digital output: ZERO, ONE, or UN-

KNOWN.
OUTPUT_STRENGTH enum name[i] Strength of digital output: STRONG, RESIS-

TIVE, HIIMPEDANCE, or UNDETERMINED
OUTPUT_TYPE char * name[i] The port type of the output

Miscellaneous
Name Type Args Description
AC_GAIN Complex_t y[i],x[i] AC gain of output y with respect to input x
deltaTemp double void returns TEMP-TNOM
gMIN double void returns the value of gmin
imagFreq double void returns the imaginary value of the frequency

axis
MESSAGE char * name[i] A message output by a model on an event-

driven node.
PARTIAL double y[i],x[i] Partial derivative of output y with respect to

input x
postQuit void void request ISSPICE4 to Quit
realFreq double void returns the real value of the frequency axis
STATIC_VAR CD name Value of a static variable
STATIC_VAR_SIZE int name Size of static var (currently unused).

User Defined Nodes
Name Type Description
EQUAL Mif_Boolean_t Assign TRUE or FALSE to this macro according to

the results of structure comparison
INPUT_STRUCT_PTR void * A pointer to a structure of the defined type
INPUT_STRUCT_PTR_ARRAY void ** An array of pointers to structures of the defined type
INPUT_STRUCT_PTR_ARRAY_SIZE

int The size of the array
MALLOCED_PTR void * Assign pointer to alloced structure to this macro
OUTPUT_STRUCT_PTR void * A pointer to a structure of the defined type
STRUCT_MEMBER_ID char * A string naming some part of the structure
STRUCT_PTR void * A pointer to a structure of the defined type
STRUCT_PTR_1 void * A pointer to a structure of the defined type
STRUCT_PTR_2 void * A pointer to a structure of the defined type

API CALLS

55

API CALLS

Memory (State and Static)
Name Type Args Description
CALLOC void* size_t,size_t improved calloc function
cm_event_alloc void* allocates memory for events and

return a temporary pointer
cm_event_get_ptr void* returns a pointer to memory allo-

cated by cm_event_alloc
FREE void &void improved free function
getVar double int returns a value stored in memory
getVarPtr void* int returns a pointer to a value stored in

memory
lastSTATE double int returns the previous state value
lastSTATEptr void* int returns a pointer to the previous

state value
MALLOC void* size_t improved malloc function
newState int int allocates memory for state variables
newVar int int allocates memory for static variables
REALLOC void* void*,size_t improved realloc function
thisSTATE double int returns the current state value
thisSTATEptr void* int returns a pointer to the current state

value

SPICE3 Conversion
Name Type Description
isBYPASS int detects the bypass option
isINIT int detects initialization
isMODEAC int detects the AC analysis
isMODEINITFIX int detects processing of OFF

keyword
isMODEINITJCT int detects processing of junction

voltages
isMODEINITPRED int detects the first iteration of each

timepoint
isMODEINITSMSIG int detects small signal intilization
isMODEINITTRAN int detects transient intitialization
isMODETRAN int detects a transient analysis
isMODETRANOP int detects transient OP
isMODEUIC int detects UIC processing

Smoothing
Name Type Description
cm_smooth_corner void smooths the transition between two

slopes into a quadratic (parabolic)
curve

cm_smooth_discontinuity void smooths the transition between two
values using an x^2 function

cm_smooth_pwl double smooths a pwl curve described by x
and y input arrays

56

Integration, Differentiation and Convergence
Name Type Description
cm_analog_converge int performs a convergence test on the

argument
cm_analog_not_converged void restricts final iteration
cm_analog_auto_partial void allows ISSPICE4 to determine the

partial
cm_ramp_factor double returns the current rampfactor value
stateIntegrate double* performs integration, or differentia-

tion, depending on its implementa-
tion.

Message Handling
Name Type Description
cm_message_get_errmsg char * returns an error message from a

function
cm_message_send int prints a message

Breakpoint Handling
Name Type Description
cm_analog_set_perm_bkpt int sets a perminant breakpoint
cm_analog_set_temp_bkpt int sets a temporary breakpoint
cm_event_queue int queues an event

Special Purpose
Name Type Description
cm_climit_fcn void a controlled limiting function
cm_netlist_get_c double the capacitance connected to a port
cm_netlist_get_l double the inductance connected to a port

Circuit Related
Name Type Description
cktABSTOL double returns ABSTOL
cktNOMTEMP double returns TNOM
cktRELTOL double returns RELTOL
cktTEMP double returns TEMP
cktVOLT_TOL double returns VNTOL

Complex Math
Name Type Description
cm_complex_add Complex_t adds complex numbers
cm_complex_div Complex_t divides complex numbers
cm_complex_mult Complex_t multiplies complex numbers
cm_complex_set Complex_t creates a Complex_t structure from

two doubles
cm_complex_sub Complex_t subtracts complex numbers

API CALLS

57

API CALLS

User-Defined Node
Name Type Description
udn_XXX_create void creates the UDN data struct
udn_XXX_initialize void initializes the UDN data
udn_XXX_copy void copies UDNs
udn_XXX_compare void compares UDNs
udn_XXX_dismantle void used to free internally allocated

memory
udn_XXX_invert void process the inversion key “~”
udn_XXX_resolve void deterines the proper output from a

node with more than 1 connection
udn_XXX_plot_val void plots output
udn_XXX_print_val void prints output
udn_XXX_ipc_val void sends data to the ipc channel

The XXX in the UDN function name is replaced with the name
of the UDN. See the description of UDNs in the Code Model
Development chapter.

AC_GAIN

Complex_t AC_GAIN(output port, input port)
Complex_t AC_GAIN(output port[i], input port)
Complex_t AC_GAIN(output port, input port[j])
Complex_t AC_GAIN(output port[i], input port[j])

input port - represents the name of a non-vector input
port

input port[i]- represents the i'th port in a vector
input port

output port - represents the name of the non-vector
output port

output port[i] - represents the j'th port in a vector
output port

This macro resolves to an lvalue that accepts the complex AC
gain output to input. The type is always a structure (“Complex_t”)
defined in the standard code model header file:

typedef struct Complex_t{
double real; // Real part of a complex number
double imag; // Imaginary part of a complex number

}Complex_t;

58

Return Value
Returns the ac gain as a Complex_t data structure. The value
returned will reflect the ac gain set for the current pass through
the code model.

Example
/* Outputting gain from input c to output out3 in an AC

analysis */
complex_gain.real = 1.0;
complex_gain.imag = 0.0;
AC_GAIN(out3,c) = complex_gain;

ANALYSIS

int ANALYSIS

ANALYSIS is used to determine the analysis mode. The value
returned by this macro will reflect the analysis type being run by
ISSPICE4.

Return Type
The return value is an enumerated integer that takes values of
DC, AC, or TRANSIENT.

Example
/* Determining analysis type */

if(ANALYSIS == MIF_AC)
// Perform AC analysis-dependent operations here

ARGS

Mif_Private_t ARGS

ARGS() is passed in the argument list of every code model to
provide a way of referencing each model to all of the remaining
macro values. It must be present, and the only argument, in the
argument list of every code model.

AC_GAIN

59

API CALLS

Return Type
This returns a Mif_Private_t structure. This is a private struc-
ture. The information is not of general interest and should not
be used for debugging.

CALL_TYPE

int CALL_TYPE

CALL_TYPE() is used to determine whether the analog simu-
lator or the event-driven simulator is being called. This will, in
general, only be of value to a hybrid model such as the
adc_bridge or the dac_bridge.

Return Type
The return value is an enumerated value, EVENT or ANALOG,
specifying the simulator type.

CALLOC

void* CALLOC(size_t num,size_t size)

This macro provides improved performance over the standard
calloc function. The syntax described by the standard calloc
function applies to this macro. Always use this macro instead of
the calloc function.

cktABSTOL

double cktABSTOL

This macro is used to retrieve the ABSTOL .OPTIONS param-
eter for the current simulation. See the ISSPICE4 User’s Guide for
mode details about the ABSTOL parameter.

Return Value
A double equal to the circuit ABSTOL.

60

cktNOMTEMP

double cktNOMTEMP

This macro is used to retrieve the nominal operating tempera-
ture for the circuit being simulated. This is equivalent to the
.OPTIONS parameter TNOM. See the ISSPICE4 User’s Guide
for on the TNOM parameter.

Return Value
A double representing the TNOM .OPTIONS parameter.

cktRELTOL

double cktRELTOL

This macro is used to retrieve the .OPTIONS parameter RELTOL
for the current simulation. See the ISSPICE4 User’s Guide for
mode details about the RELTOL parameter.

Return Value
A double representing the RELTOL .OPTIONS parameter.

cktTEMP

double cktTEMP

This macro is used to retrieve the .OPTIONS parameter TEMP
for the current simulation. See the ISSPICE4 User’s Guide for
mode details about the TEMP parameter.

Return Value
A double representing the TEMP .OPTIONS parameter.

CKTNOMTEMP

61

API CALLS

cktVOLT_TOL

double cktVOLT_TOL

This macro is used to retrieve the .OPTIONS parameter VNTOL
for the current simulation. See the ISSPICE4 User’s Guide for
mode details about the VNTOL parameter.

Return Value
A double representing the VNTOL .OPTIONS parameter.

cm_analog_auto_partial

void cm_analog_auto_partial()

This function can be called at the end of a code model in lieu of
calculating the values of partial derivatives explicitly. When
using this function, no values should be assigned to the
PARTIAL macro. Automatic calculation of partial derivatives
can save considerable time designing and coding a model
since manual computation of partial derivatives can become
very complex and error-prone. However, automatic evaluation
will increase simulation run time significantly. Automatic calcu-
lation of partials causes the model to be called n additional
times (for a model with n-inputs). Each input is varied by a small
amount (1e-6 for voltage inputs and 1e-12 for current inputs)
and the values of the partial derivatives are approximated by
the simulator through divided difference calculations.

62

cm_analog_converge

int cm_analog_converge(state)

double *state; // The state to be converged

This function accepts the address of a state variable that was
previously allocated using newState(). The function itself serves
to notify the simulator that for each timestep taken, the variable
specified by the argument must be iterated upon until it con-
verges.

Return Value
Returns 1 if the function fails. Otherwise this function returns 0.

cm_analog_not_converged

void cm_analog_not_converged()

This function should be called by an analog model whenever it
performs internal limiting of one or more of its inputs to aid in
reaching convergence. It causes the simulator to call the model
again at the current timepoint and continue solving the circuit
matrix. A new timepoint will not be attempted until the code
model returns without calling this function. This function should
be used for code models with multiple inputs expected to
change abruptly.

cm_ramp_factor

double cm_ramp_factor()

This function indicates whether a ramp time value, requested in
the ISSPICE4 netlist (with the use of .OPTION RAMPTIME=
<duration>), has elapsed. If the RAMPTIME option is used, the
function returns a 0.0 during the DC operating point solution
and a value which is between 0.0 and 1.0 during the ramp. A
value of 1.0 is returned after the ramp is over or if the RAMPTIME

CM_ANALOG_CONVERGE

63

API CALLS

option is not used. This value is intended as a multiplication
factor to be used with all model outputs which would ordinarily
experience a “power-up” transition. Currently, all sources within
the simulator are automatically ramped to the “final” time-zero
value if a RAMPTIME option is specified.

Return Value
A double representing the multiplication factor for ramping. The
return value is 1.0 if the ramping is finished or not used, between
0.0 and 1.0 while ramping, and 0.0 for the DC analysis.

cm_analog_set_perm_bkpt

int cm_analog_set_perm_bkpt(time)

double time; // The time of the breakpoint to be set

This function is used to post time points in the analog simulator
algorithm. It forces the simulator to choose the argument, a time
value, as a breakpoint. The simulator may choose the argument
as the next timepoint or a value less than the argument, but not
greater, regardless of how many timepoints pass before the
breakpoint is reached. The timepoint set with this function will
not be removed from the simulator breakpoint list. Thus, a
breakpoint is guaranteed at the passed time value. Note that a
breakpoint may also be set for a time prior to the current time,
but this will result in an error if the posted breakpoint is prior to
the last accepted time (i.e., T(1)).

Return Value
Returns 1 if the function fails. Otherwise this function returns 0.

64

cm_analog_set_temp_bkpt

int cm_analog_set_temp_bkpt(time)

double time; // The time of the breakpoint to be set

This function is used in a similar manner as the
cm_analog_set_perm_brkpt, except the time set by this func-
tion is not permenently added to the internal breakpoint list. The
breakpoint established by this function is removed as soon as
a new timepoint is accepted. This function is useful in the event
that a timepoint needs to be retracted after its first posting in
order to recalculate a new breakpoint based on new input data
(for controlled oscillators, controlled one-shots, etc.), since
temporary breakpoints automatically “go away” if not requested
at each timestep. Note that a breakpoint may also be set for a
time prior to the current time, but this will result in an error if the
posted breakpoint is prior to the last accepted time (i.e., T(1)).

Return Value
Returns 1 if the function fails. Otherwise this function returns 0.

cm_climit_fcn

void cm_climit_fcn(in, in_offset, cntl_upper,
cntl_lower, lower_delta, upper_delta, limit_range,
gain, fraction, out_final, pout_pin_final,
pout_pcntl_lower_final,pout_pcntl_upper_final)

double in, // The input value
double in_offset, // The input offset
double cntl_upper, // The upper control input value
double cntl_lower, // The lower control input value
double lower_delta, //Delta from control to limit value
double upper_delta, //Delta from control to limit value
double limit_range, // The limiting range
double gain, // The gain from input to output
int percent, // TRUE = absolute FALSE = fractional
double *out_final, // The output value
double *pout_pin_final, // partial of output wrt input

CM_ANALOG_SET_TEMP_BKPT

65

API CALLS

double *pout_pcntl_lower_final,// The partial of
// the output wrt lower control input

double *pout_pcntl_upper_final)// The partial of
// the output wrt upper control input

This is a controlled limiter function. A single input, single output
function similar to a gain block. However, the output of this
function is restricted to the range specified by the cntl_lower
and cntl_upper limits.

The limit range is the value BELOW THE CNTLUPPER LIMIT
AND ABOVE THE CNTLLOWER LIMIT at which smoothing of
the output begins (minimum positive value difference must
exist between the CNTLUPPER input and the CNTLLOWER
input at all times). The limit_range represents the delta WITH
RESPECT TO THE OUTPUT LEVEL at which smoothing
occurs. Thus, for an gain of 2.0 and limits of 1.0 and -1.0 volts,
the output will begin to smooth out at 0.9 volts, which occurs
when the input value is at 0.4.

Note also that cntl_lower and cntl_upper are checked to make
sure they are spaced far enough apart to guarantee the
existence of a linear range between them. The range is calcu-
lated as the difference between (cntl_upper - upper_delta -
limit_range) and (cntl_lower + lower_delta + limit_range) and
must be greater than zero. When limit_range is specified as a
fractional value, it is calculated as a fraction of the difference
between cntl_upper and cntl_lower. Still, the potential exists for
too great a limitrange value to be specified for proper operation,
in which case an error message is generated.

Return Value
The output as a pointer to a double and the partials with respect
to the lower and upper limits.

66

cm_complex_add

Complex_t cm_complex_add(x, y)

Complex_t x; // (x.real+jx.imag)
Complex_t y; // The second operand of x + y

Takes two complex values, Complex_t structures, as inputs
and adds them. See cm_complex_set for a description of the
Complex_t data structure.

Return Value
A Complex_t structure containing the results of the addition.

cm_complex_div

Complex_t cm_complex_div(x, y)

Complex_t x; // The first operand of x / y
Complex_t y; // The second operand of x / y

Takes two complex values, Complex_t structures, and divides
them. See cm_complex_set for a description of the Complex_t
data structure.

Return Value
A Complex_t structure containing the results of the division.

cm_complex_mult

Complex_t cm_complex_mult(x, y)

Complex_t x; // The first operand of x * y
Complex_t y; // The second operand of x * y

Takes two complex values, Complex_t structures, as inputs
and multiplies them. See cm_complex_set for a description of
the Complex_t data structure.

CM_COMPLEX_ADD

67

API CALLS

Return Value
A Complex_t structure containing the results of the multiplica-
tion.

cm_complex_set

Complex_t cm_complex_set(real_part, imag_part)

double real_part; // Real part of a complex number
double imag_part; // Imaginary part of a complex number

Takes two doubles and converts them to a Complex_t data
structure. The first double is taken as the real part and the
second is taken as the imaginary part of the resulting complex
value.

Return Value
A Complex_t data structure defined as;

typedef Mif_Complex_t Complex_t

struct{
double real;
double imag;

}Mif_Complex_t

cm_complex_sub

Complex_t cm_complex_sub(x, y)

Complex_t x; // The first operand of x - y
Complex_t y; // The second operand of x - y

Takes two complex values, Complex_t structures, as inputs
and subtracts them. See cm_complex_set for a description of
the Complex_t data structure.

Return Value
A Complex_t structure containing the results of the subtraction.

68

cm_event_alloc

void *cm_event_alloc(tag, size)

int tag; // User-specified tag for this block of memory
int size; // The number of bytes to allocate

This function allocates storage space for event-driven state
information. The storage space is not static. Like the T(n) API
call, the information in this storage represents a vector of two
values which rotate with each accepted ISSPICE4 timepoint
evaluation. The first location is the current state value. The
second location is the previous state value. The “tag” parameter
allows you to specify an integer tag when allocating space. This
allows more than one rotational storage location per model to
be allocated and easily managed. The “size” parameter speci-
fies the size in bytes of the storage (computed by the C
language “sizeof()” operator).

Return Value
A NULL pointer is returned if this function fails. Otherwise this
function returns a temporary void pointer that can be cast to the
appropriate type through an assignment line in the code model
definition file. The pointer should not be used if another call to
cm_event_alloc is used. The cm_event_get_ptr API call should
be used to retrieve a pointer to the allocated memory.

cm_event_get_ptr

void *cm_event_get_ptr(tag, timepoint)

int tag;// The user-specified tag for the memory block
int timepoint; // The timepoint - 0=current, 1=previous

This function retrieves the pointer to previously allocated rota-
tional storage space allocated using cm_event_alloc. The
functions take the integer “tag” used to allocate the space, and
an integer from 0 to 1 representing the timepoint for the desired
state variable. For example, an argument of 0 will retrieve the
address of storage for the current timepoint. An argument of 1

CM_EVENT_ALLOC

69

API CALLS

will retrieve the address of storage for the last accepted
timepoint. Once a model is exited, storage to the current
timepoint state storage location (i.e., timepoint=0) will, upon the
next timepoint iteration, be rotated to the previous location (i.e.,
timepoint=1). When rotation is done, a copy of the old storage
value is placed in the new storage location. These features
allow you to know which piece of state information is being used
within the model function at each timepoint.

Return Value
This function returns a void pointer that should be cast to the
appropriate type. If the function fails NULL is returned.

cm_event_queue

int cm_event_queue(time)

double time; // The time of the event to be queued

This function is similar to cm_analog_set_perm_bkpt(), but
functions with event-driven models. This function queues an
event at the specified time. All other details applicable to
cm_analog_set_perm_bkpt() apply to this function as well.

Return Value
Returns 1 if the function fails. Otherwise this function returns 0.

cm_message_get_errmsg

char *cm_message_get_errmsg()

This function is used with other functions to provide error
handling. More specifically, whenever a library function which
returns type “int” is executed from a model, this function will
return an integer value, n. If this value is not equal to zero (0),
an error condition has occurred. Functions which return point-
ers will return a NULL value if an error has occurred. This

70

CM_MESSAGE_GET_ERRMSG

function is used to obtain a pointer to an error message. This is
passed to the simulator interface through the
cm_message_send() function.

Return Value
A pointer to a character string containing the proper error
message for a function.

Example
err = cm_analog_set_perm_bkpt(TIME);
if (err) \{

cm_message_send(cm_message_get_errmsg());
\}
else \{...

cm_message_send

int cm_message_send(char *msg)

char *msg; // The message to output.

This function sends messages to the .ERR file. If the message
includes the string “Error:” the simulation will terminate if sent
on the initial pass through the code model. A message will be
sent every time this function is executed. You will have to
provide a condition that limits the number of times this function
is executed within your code model. The easiest way to accom-
plish this is to use newVar() to allocate a variable and use it as
a flag to conditionally execute cm_message_send. If the mes-
sage is sent more than once a “\n” must be placed at the end of
the string.

Return Value
Returns 1 if the function fails. Otherwise this function returns 0.

71

API CALLS

Example
...

if(error)
cm_message_send("Error: Parameter capvalue create

divide by zero\n");
...

cm_netlist_get_c

double cm_netlist_get_c()

This function searchs the analog circuitry to which the input is
connected, and totals the capacitance found at that node. The
function, as currently written, assumes tthe model has only one
single-ended analog input port.

Return Value
This function returns 0 if an error is encountered. Otherwise a
double is returned representing the total capacitance con-
nected to the code models’ port.

cm_netlist_get_l

double cm_netlist_get_l()

This function searchs the analog circuitry to which the input is
connected, and totals the inductance found at that node. The
function, as currently written, assumes the model has only one
single-ended analog input port.

Return Value
This function returns 0 if an error is encountered. Otherwise a
double is returned representing the total inductance connected
to the code models’ port.

72

CM_SMOOTH_CORNER

cm_smooth_corner

void cm_smooth_corner(x_input, x_center, y_center,
domain, lower_slope, upper_slope, *y_output, *dy_dx)

double x_input // The value of the X input
double x_center // The X intercept of the two slopes
double y_center // The Y intercept of the two slopes
double domain // The smoothing domain
double lower_slope // The lower slope
double upper_slope // The upper slope
double *y_output // The smoother Y output
double *dy_dx // The partial of Y wrt X

This function automates smoothing between two arbitrarily-
sloped lines that meet at a point as shown below.

You specify the center point B (x_center, y_center), plus a
smoothing domain (x-valued delta) above and below x_center
that defines a smoothing region about the center point. The
slopes of the meeting lines outside of this smoothing region are
also specified (lower_slope, upper_slope). The function then
interpolates a smoothly varying output (*y_output) and its
derivative (*dy_dx) for the x_input value troughout the smooth-
ing domain (from points A to C). This function helps to automate
the smoothing of piecewise-linear functions which, in turn, aids
in convergence.

Return Value
This function returns the smoothed Y output (*y_output) as a
pointer to a double along with the partial (*dy_dx) as a pointer
to a double.

upper_slope

lower_slope

smoothing
domain

A B C

73

API CALLS

(x_lower, y_lower)

(x_upper, y_upper)

cm_smooth_discontinuity

void cm_smooth_discontinuity(x_input, x_lower, y_lower,
x_upper, y_upper, *y_output, *dy_dx)

double x_input; // The x value at which to compute y
double x_lower; // The x value of the lower corner
double y_lower; // The y value of the lower corner
double x_upper; // The x value of the upper corner
double y_upper; // The y value of the upper corner
double *y_output; // The computed smoothed y value
double *dy_dx; // The partial of y wrt x

This function allows you to obtain a smoothly-transitioning
output (*y_output) that varies between two independent points
(x_lower, y_lower) to (x_upper, y_upper) as shown below.

The function accepts an x value and produces the y and dy/dx
fofr an X2 function between the points specified.

Return Value
This function returns the smoothed Y output (y_output) as a
pointer to a double along with the partial (*dy_dx) as a pointer
to a double.

74

cm_smooth_pwl

double cm_smooth_pwl(x_input, *x, *y, size, input_domain,
*dout_din)

double x_input; // The x input value
double *x; // The vector of x values
double *y; // The vector of y values
int size; // The size of the xy vectors
double input_domain; // The smoothing domain
double *dout_din; // The partial of the out wrt the in

This function duplicates much of the functionality of the pre-
defined PWL (Table Model) code model. The cm_smooth_pwl()
takes an input value plus x-coordinate and y-coordinate vector
values along with the total number of coordinate points used to
describe the piecewise linear transfer function and returns the
interpolated, or extrapolated, value of the output based on that
transfer function. More detail is available by looking at the
description of the PWL code model (see the ISSPICE4 User’s
Guide). Note that the output value is the function’s returned
value.

Return Value
This function returns a double representing the Y output inter-
polated, or extrapolated, from the x input given the PWL tansfer
function determined by the arrays *y and *x..

deltaTemp

double deltaTemp

This function returns a double representing the difference
between TNOM and TEMP.

CM_SMOOTH_PWL

75

API CALLS

EQUAL

Mif_Boolean_tEQUAL

This is a UDN macro. An assignment should be made to this
macro according to the results of structure comparison within
the compare function defined in the UDN definition file.

Example
void udn_real_compare(COMPARE_ARGS)
{
double *real_struct1 = STRUCT_PTR_1
double *real_struct2 = STRUCT_PTR_2

// Compare structures
if((*real_struct1) == (*real_struct2))

EQUAL=TRUE;
else

EQUAL = FALSE;
}

FREE

void FREE(&void)

This macro provides improved performance over the standard
free function. The syntax described by the standard free func-
tion applies to this macro. Always use this macro instead of the
free function.

76

getVar

double getVar(index)

int index - an integer value that is the index into the
allocated storage.

This command is used to retrieve the value of a variable located
at the index specified by the argument.

Return Value
This macro returns the contents of the variable allocated by
newVar().

Example
// index to VAR�s
#define DENCOEFFICIENT 0
#define NUMCOEFFICIENT den_size + 1
#define GAIN den_size+num_size + 2
#define NUMVARS den_size+num_size + 3

double gainPtr; // pointer to the gain
double denCoefficient; // pointer to array
double numCoefficient; // pointer to array
double *integrator; // outputs of the integrators
double *integrator_in; //previous integrator outputs
double *lastintegrator_in;

if (INIT==1) { //First pass...allocate storage ...
newVar(NUMVARS); // initialize memory
newState(2 * den_size+1); // initialize memory

}
// set pointers to alloced states and vars
denCoefficient = getVar(DENCOEFFICIENT);
numCoefficient = getVar(NUMCOEFFICIENT);
gainPtr = getVar(GAIN);

integrator = thisSTATEptr(0);
integrator_in = thisSTATEptr(den_size);
lastintegrator_in = lastSTATEptr(den_size);

GETVAR

77

API CALLS

getVarPtr

double* getVar(index)

int index - an integer value that is the index into the
allocated storage.

This command is used to retrieve a pointer to the value of a
variable located at the index specified by the argument.

Example
See the example for getVar.

gMIN

double gMIN

This macro is used to retrieve the .OPTIONS parameter GMIN
for the current simulation. See the ISSPICE4 User’s Guide for
mode details about the GMIN parameter.

Return Value
A double representing the GMIN .OPTIONS parameter.

imagFreq

double imagFreq

This retrieves the imaginary component of the frequency axis
for the AC analysis. It represents jω / 2 π. In order for your code
model to function with the PZ analysis it must process both the
real and imaginary frequency components. The capacitor code
model example demonstrates the use of this function.

Return Value
A double representing the imaginary frequency component.

78

INIT

Boolean_t INIT

INIT is used to determine if the code model is being initialized.
The first time ISSPICE4 access a code model this function returns
TRUE, 1. This is quite useful for initializing memory storage.

Return Type
This macro returns TRUE, 1, if ISSPICE4 is passing through the
code model for the first time, otherwise this value is FALSE, 0.

Example
/* Initializing and outputting a User-Defined Node

result */
if(INIT)
OUTPUT(y) = MALLOC(sizeof(user_defined_struct));
y_ptr = OUTPUT(y);
y_ptr->component1 = 0.0;
y_ptr->component2 = 0.0;

else
y_ptr = OUTPUT(y);
y_ptr->component1 = x1;
y_ptr->component2 = x2;

INPUT

double INPUT(input port)
double INPUT(input port[i])
void* INPUT(input port)

input port - represents the name of the input port
input port[i]- represents the i'th port in the vector

input port

This macro is used to obtain the current input value for a code
model from the port specified in the argument. The values
returned are used to process the outputs for the code model.

INIT

79

API CALLS

Return Type
The return value depends on the type of node being referened
by the argument to this macro. The proer return type is deter-
mined by the entries in the IFS file.

Example
// Accessing the value of a simple real-valued input

x = INPUT(a);

// Accessing a digital input
x = INPUT(a);

// Accessing a vector input and checking for null ports
if(! PORT_NULL(a))
for(i = 0; i < PORT_SIZE(a); i++)
x = INPUT(a[i]);

Example
// Accessing the value of a User-Defined Node input...
/* This node type includes two elements in its

definition. */
a_ptr = INPUT(a);
x = a_ptr->component1;
y = a_ptr->component2;

INPUT_STATE

int INPUT_STATE(input port)
int INPUT_STATE(input port[i])

input port - represents the name of the non-vector
input port

input port[i]- represents the i'th port in the vector
input port

INPUT_STATE(a) resolves to the state value defined for digital
node types. This will be one of the symbolic constants ZERO,
ONE, or UNKNOWN.

80

INPUT_STRENGTH

int INPUT_STRENGTH(input port)
int INPUT_STRENGTH(input port[i])

input port - represents the name of the non-vector
input port

input port[i]- represents the i'th port in the vector
input port

This function is used to determine the strength with which a
digital input node, specified by the argument, is being driven.
The strength value is determined by a resolution algorithm
which looks at all outputs connected to a node and determines
a final strength.

Return Value
Returns an integer represented by the Digital_Strength_t enu-
meration;

typedef enum{
STRONG,
RESISTIVE,
HI_IMPEDANCE,
UNDETERMINED,

} Digital_Strength_t;

INPUT_STRUCT_PTR

void* INPUT_STRUCT_PTR

This is a UDN macro used to retrieve a pointer to the input
structure of the defined type.

Return Value
A pointer to the input structure of the defined type.

INPUT_STRENGTH

81

API CALLS

Example
void udn_real_copy(COPY_ARGS)
{
double *real_from_struct = INPUT_STRUCT_PTR;
double *real_to_struct = OUTPUT_STRUCT_PTR;

// Copy the structure
*real_to_struct = *real_from_struct;

}

INPUT_STRUCT_PTR_ARRAY

void** INPUT_STRUCT_PTR_ARRAY

This is a UDN macro used to retreive an array of pointers to the
inputs of a node. This would represent all connections to a node
of the defined type.

Return Value
An array of pointers.

Example
void udn_real_resolve(RESOLVE_ARGS)
{
double **array = (double**) INPUT_STRUCT_PTR_ARRAY;
double *out = OUTPUT_STRUCT_ARRAY;
int struct_size = INPUT_STRUCT_PTR_ARRAY_SIZE;

double sum;
int i;

// Sum the input values
for(i=o, sum=0;i < struct_size;i++)

sum += *(array[i]);

// Assign the result
*out = sum;

}

82

INPUT_STRUCT_PTR_ARRAY_SIZE

int INPUT_STRUCT_PTR_ARRAY_SIZE

This is a UDN macro used to retrieve the size of the
INPUT_STRUCT_PTR_ARRAY. This represents the number
of connections at a particular node.

Return Value
This macro returns an integer representing the size of the
INPUT_STRUCT_PTR_ARRAY.

Example
See the example for INPUT_STRUCT_PTR_ARRAY.

isBYPASS

int isBYPASS

This function detects the point at which IsSpice4 processes the
BYPASS option.

Return Value
An integer value of 1 is returned if the simulation is in the
BYPASS, mode. Otherwise, a 0 is returned.

isINIT

int isINIT

This macro is used to determine the mode of the current
simulation. This function is equivalent to the INIT macro. The
INIT macro should be used instead of this macro.

Return Value
An integer value of 1 is returned if the simulation is in the
initialization, INIT, mode. Otherwise, a 0 is returned.

INPUT_STRUCT_PTR_ARRAY_SIZE

83

API CALLS

isMODEAC

int isMODEAC

This macro is used to determine the mode of the current
simulation. This function is equivalent to comparing the return
of the ANALYSIS macro with MIF_AC. The later should be used
instead of this macro.

Return Value
An integer value of 1 is returned if the simulation is in the AC,
MIF_AC, mode. Otherwise, a 0 is returned.

isMODEINITFIX

int isMODEINITFIX

This macro detects when the OFF keyword is being processed
within ISSPICE4.

Return Value
An integer value of 1 is returned if the simulation is in the
INITFIX mode. Otherwise, a 0 is returned.

isMODEINITJCT

int isMODEINITJCT

This macro detects the first iteration of the circuit. This is when
the junction voltages for all devices are set to something
reasonable. When there is no advance knowledge, such initial
conditions, the best results have been obtained by initializing
the junctions to Vto or its equivalent. This allows the device
junction voltage to move in either direction in a single iteration.

Return Value
An integer value of 1 is returned if the simulation is in the
INITJCT mode. Otherwise, a 0 is returned.

See the
Laplace (s_xfer)
example.

84

isMODEINITPRED

int isMODEINITPRED

This macro detects the first iteration at every timepoint. This is
the point at which terminal voltages are predicted. An if state-
ment using this macro is a good location for breakpoints. This
will allow a code model to be debugged without having to step
through all iterations. This is also a good place to keep track of
iteration counts. A static integer can be used to count the
iterations and set to 0 inside an if statement using this macro.
This will allow convergence problems to be pin-pointed.

Return Value
An integer value of 1 is returned if the simulation is in the
INITPRED mode. Otherwise, a 0 is returned.

isMODEINITSMSIG

int isMODEINITSMSIG

This macro detects when the intialization for the small signal AC
analysis is processed. This mode can be used to store special
values needed for the small signal analysis. Only those values
not already available should be computed at this time.

Return Value
An integer value of 1 is returned if the simulation is in the
INITSMSIG mode. Otherwise, a 0 is returned.

isMODEINITTRAN

int isMODEINITTRAN

This macro detects the first iteration of the first timepoint after
the DC solution. Historically, this mode would be used to set the
previous state variable for the preditor-corrector algorithm to

ISMODEINITPRED

An if statement
using this
macro is a good
location for
breakpoints.

85

API CALLS

predict correctly. However, the predictor algorithm generates
data to fill non-existent time, previous, timepoints . This is
always equivalent to isMODEINITPRED. (see
isMODEINITPRED).

Return Value
An integer value of 1 is returned if the simulation is in the
INITJCT mode. Otherwise, a 0 is returned.

isMODETRAN

int isMODETRAN

This macro is used to determine the mode of the current
simulation. This function is equivalent to comparing the return
of the ANALYSIS macro with MIF_TRAN. The later should be
used instead of this macro.

Return Value
An integer value of 1 is returnedif the simulation is in the
transient analysis mode. Otherwise, a 0 is returned.

isMODETRANOP

int isMODETRANOP

This macro is used to determine if the simulation is operating in
the transient analysis operating point mode.

Return Value
An integer value of 1 is returned if the simulation is in the
transient analysis mode. Otherwise, a 0 is returned.

86

isMODEUIC

int isMODEUIC

This macro can be used to determine if the .TRAN UIC keyword
has been set. If so, the code model should process all neces-
sary initial conditions.

Return Value
An integer value of 1 is returned if the UIC keyword has been
used for the simulation. Otherwise, a 0 is returned.

lastSTATE

double lastSTATE(index)

int index - an integer value that corresponds to the
state variable allocated by newState()

This macro is used to retreive the state value for the last
(previous) time point . The index refers to the array location
that was allocated by the newState() API call.

Return Value
The state value for the previous timepoint. ISSPICE4 will auto-
matically mark the state variables in time so that the previous
state is always returned.

lastSTATEptr

double* lastSTATEptr(index)

int index - an integer value that corresponds to the
state variable allocated by newState()

This macro is used to retreive a pointer to the state value for the
last (previous) time point . The index refers to the array
location that was allocated by the newState() API call.

ISMODEUIC

87

API CALLS

Return Value
A pointer to the state value for the previous timepoint. ISSPICE4
will automatically mark the state variables in time so that a
pointer to the previous state is always returned.

Example
...
#define CURRENT 0
#define CHARGE 1
....
double *i_in, *i_last, *charge;

if(INIT)
newState(2)

i_in = this STATEptr(CURRENT);
charge = thisSTATEptr(CHARGE);
i_last = lastSTATEptr(CURRENT);

...

A 2 element array of pointers was allocated using newState.
Element 0 was assigned to current (i_in and i_last) and element
1 was assigned to CHARGE.

LOAD

double LOAD(input port)
double LOAD(input port[i])

input port - represents the name of the non-vector
input port

input port[i]- represents the i'th port in the vector
input port

This macro is used in a code model to post a capacitive load
value to a particular input or output port during the INIT pass of
the simulator. All values posted for a particular event-driven
node using the LOAD() macro are summed, producing a total
load value.

88

Return Value
LOAD returns a double representing the capacitive load for the
node specified.

MALLOCED_PTR

void* MALLOCED_PTR

This is a UDN macro used to allocate storage for the UDN’s data
structure. This is typically done once in the udn_xxx_create
function.

Return Value
Returns a void pointer.

Example
void udn_real_create(CREAT_ARGS)
{

MALLOCED_PTR = MALLOC(sizeof(double));
}

MALLOC

void MALLOC(size_t size)

This macro provides improved performance over the standard
malloc function. The syntax described by the standard malloc
function applies to this macro. Always use this macro instead of
the malloc function.

newState

int newState(count)

int count - the number of states to allocate

This macro is used to allocate an array of pointers that will be
used for state variables. Each element of the array is a pointer

LOAD

89

API CALLS

to two elements. The first element of the pointer is the state
value for the current time point and the second element is the
state at the previous time point. These values are marched in
time by IsSpice4 so that they are always pointing to the current
and previous state values. The thisSTATEptr and lastSTATEptr
API calls are used to retrieve the pointers.

Return Value
Returns the number of states allocated.

Example
#define CURRENT 0
#define CHARGE 1
....
double *i_in, *i_last, *charge;

if(INIT)
newState(2)

i_in = this STATEptr(CURRENT);
charge = thisSTATEptr(CHARGE);
i_last = lastSTATEptr(CURRENT);

...

A 2 element array of pointers was allocated using newState.
Element 0 was assigned to current (i_in and i_last) and element
1 was assigned to CHARGE.

newVar

void newVar(count)

count - The number of elements to allocate.

This macro allocates storage for parameter values. The count
argument specifies the number of elements to allocate. The
getVarPtr macro is used to assign the pointer. This command
is used during initialization, INIT, of the code model to allocate
one time storage.

90

Return Value
This function does not return a value.

Example
See the example for getVar.

OUTPUT

void* OUTOUT(output port)
void* OUTOUT(output port[i])
void* OUTOUT(output port)

output port - represents the name of the output port
output port[i] - represents the i'th port in the vector

output port

This macro is used to assign an output value to the named port.
If the port is described as a vector port in the IFS file then the
assignment will resolve to a pointer (The third description listed
above). The type that this macro resolves to is detemined by the
port type description in the IFS file.

Return Value
A void pointer that can be used to assign values to OUTPUT.

Example
// Outputting a simple real-valued result

OUTPUT(out1) = 0.0;

OUTPUT_CHANGED

Boolean_t OUPUT_CHANGED(output port)
Boolean_t OUPUT_CHANGED(output port[i])

output port - represents the name of the non-vector
output port

output port[i] - represents the i'th port in the vector
output port

NEWVAR

91

API CALLS

This macro resolves to an lvalue and is used to inform the event
driven simulation that the code model will post new outputs. If
the macro is set TRUE (default value) an output state, strength
and delay must be posted by the model during the call. If no
output is generated by the pass the macro should be set to
FALSE and no output state, strength or delay need be posted.
This macro applies to a single output only. Therefore, if the
model has a vector output port, the macro must be issued for
each port in the vector port.

OUTPUT_DELAY

double OUTPUT_DELAY(output port)
double OUTPUT_DELAY(output port[i])

output port - represents the name of the non-vector
output port

output port[i] - represents the i'th port in the vector
output port

This macro resolves to an lvalue that accepts a double repre-
senting the delay assigned to the event driven port named as
the argument. This macro must be set for each digital or User-
Defined Node output from a model during each pass, unless the
OUTPUT_CHANGED(a) macro is set to FALSE. A non-zero
value must be assigned to OUTPUT_DELAY(). Assigning a
value of zero (or a negative value) will cause an error.

Example
/* Outputting the delay for a digital or user-defined

output */
OUTPUT_DELAY(out5) = 1.0e-9;

92

OUTPUT_STATE

int OUTPUT_STATE(output port)
int OUTPUT_STATE(output port[i])

output port - represents the name of the non-vector
output port

output port[i] - represents the i'th port in the vector
output port

This macro resolves to an lvalue that accepts the state to be
placed at the output port named as the argument. Valid values
are defined by the Digital_State_t enumeration.

typedef enum{
ZERO,
ONE,
UNKNOWN,

} Digital_State_t;

This is the normal way of posting an output state from a digital
code model.

Example
/* Outputting a digital result */

OUTPUT_STATE(out4) = ONE;

OUTPUT_STRENGTH

int OUTPUT_STRENGTH(output port)
int OUTPUT_STRENGTH(output port[i])

output port - represents the name of the non-vector
output port

output port[i] - represents the i'th port in the vector
output port

The macro resolves to an lvalue that accepts the strength to be
assigned to the output port named as the argument. This macro
does not accept the name of a vector port. Each element must

OUTPUT_STATE

93

API CALLS

be assigned a strength individually. Possible values are any of
the enumerated types listed below.

typedef enum{
STRONG,
RESISTIVE,
HI_IMPEDANCE,
UNDETERMINED,

} Digital_Strength_t;

OUTPUT_STRUCT_PTR

void* OUTPUT_STRUCT_PTR

This is a UDN macro that provides a pointer to the defined node
structure for the output that results from resolving input struc-
tures. It is used with the udn_XXX_resolve function.

Return Value
A void pointer to the defined UDN data structure.

Example
void udn_real_resolve(RESOLVE_ARGS)
{
double **array = (double**) INPUT_STRUCT_PTR_ARRAY;
double *out = OUTPUT_STRUCT_ARRAY;
int struct_size = INPUT_STRUCT_PTR_ARRAY_SIZE;

double sum;
int i;

// Sum the input values
for(i=o, sum=0;i < struct_size;i++)

sum += *(array[i]);

// Assign the result
*out = sum;

}

94

PARAM

CD PARAM(parameter name)
CD PARAM(parameter name[i])

parameter - The name of the model parameter as defined
in the IFS file.

PARAM is used to obtain a model parameter value from a
instance’s .Model line. The argument to this macro is the name,
as defined in the Interface Specification file, of the model
parameter you wish to obtain.

Return Value
In the first form, shown above, the return value would be the
value of the .Model parameter name. The type of value returned
would depend on the definition of the model parameter in the
IFS file. If the model parameter gain was defined as a real value
then PARAM(gain) would return the real value asssigned to
gain in the .Model line. In the second form, the return value
would be the i'th element of the vector parameter name.

PARAM_SIZE

int PARAM_SIZE(parameter)

parameter - The name of the model parameter as defined
in the IFS file.

This macro is used to determine the number of values assigned
to a vector parameter. Since the number of values for a vector
parameter will vary, this macro should be used to determine a
limit when looping through the values of a particular vector
parameter.

This macro is undefined if the argument is a scalar parameter.

PARAM

95

API CALLS

Return Value
The macro returns the number elements assigned to the
parameter for the given instance.

Example
// Accessing a vector parameter from the .model card

for(i = 0; i < PARAM_SIZE(in_offset); i++)
p = PARAM(in_offset[i]);

PARAM_NULL

int PARAM_NULL(parameter)

parameter - The name of the model parameter as defined
in the IFS file.

This macro is used to determine if a parameter has been
assigned a value.

Return Value
The macro returns TRUE, 1, if the parameter was not given a
value. FLASE, 0, is returned if the parameter was given a value.

Example
if(ANALYSIS == DC)

if(!PARAM_NULL(ic) && isMODETRANOP){
OUPUT(cap) = PARAM(ic);

}
PARTIAL(cap,cap) = 0.0;

}

96

PARTIAL

double PARTIAL(output port, input port)
double PARTIAL(output port[i], input port)
double PARTIAL(output port, input port[j])
double PARTIAL(output port[i], input port[j])

input port - represents the name of a non-vector
input port

input port[i] - represents the i'th port in a vector
input port

output port - represents the name of the non-vector
output port

output port[i] - represents the j'th port in a vector
output port

This macro resolves to an lvalue that accepts the partial of the
output with respect to the input. It is the responsibility of the
code model to generate the partial of every output/input com-
bination. The type is always double since partial derivatives are
only defined for nodes with real valued quantities (i.e., analog
nodes).

Partial derivatives are required by the simulator to solve the
non-linear equations that describe circuit behavior for analog
nodes. Because coding partial derivatives can become difficult
and error-prone for complex analog models, you may wish to
consider using the cm_analog_auto_partial() function instead
of using this macro.

Example
//Outputting the partial of output out1 w.r.t. input a
 PARTIAL(out1,a) = PARAM(gain);

/* Outputting the partial of output out2(i) w.r.t. input
b(j) */
for(i = 0; i < PORT_SIZE(out2); i++)
for(j = 0; j < PORT_SIZE(b); j++)
PARTIAL(out2[i],b[j]) = 0.0;

PARTIAL

97

API CALLS

PORT_SIZE

int PORT_SIZE(port name)

port name - represents the vector port, port name

This macro is used to determine the number of ports assigned
to a vector port. Since the number of ports for a vector port will
vary, this macro should be used to determine a limit when
looping through the ports of a particular vector port.

This macro is undefined if the argument is a scalar parameter.

Return Value
This macro returns an integer representing the number of ports
used for the named vector port.

Example
/* Outputting the partial of output out2(i) w.r.t. input

b(j) */
for(i = 0; i < PORT_SIZE(out2); i++)
for(j = 0; j < PORT_SIZE(b); j++)
PARTIAL(out2[i],b[j]) = 0.0;

PORT_NULL

int PORT_NULL(input port)
int PORT_NULL(input port[i])

input port - represents the name of the non-vector
input port

input port[i] - represents the i'th port in the vector
input port

This macro is used to determine if a port has been connected
in the ISSPICE4 netlist. A null, or unconnected, port is defined by
placing the NULL keyword as the node name. This macro
should be used to control the execution of node processing if
NULL ports are allowed by a code model.

98

Return Value
The return value is TRUE, 1, if the port has been assigned
NULL. The return is FALSE, 0, if the port has been assigned a
connection.

Example
// Outputting a vector result and checking for null

if(! PORT_NULL(a))
for(i = 0; i < PORT_SIZE(a); i++)
OUTPUT(a[i]) = 0.0;

postQuit

void postQuit

This macro is used to request that the simulation be terminated.
This macro should be used in conjunction with error detection
inside your code model.

RAD_FREQ

double RAD_FREQ

This macro is used to obtain the current AC analysis frequency
in radians/second.

Return Type
Returns a double representing the current analysis frequency
expressed in units of radians per second.

realFreq

double realFreq

This macro is used to process results for the real portion of the
frequency axis of the AC analysis. This is a requirement if your
code model is to operate correctly with the PZ analysis.

PORT_NULL

99

API CALLS

Return Value
Returns a double representing the real portion of the frequency
axis for the AC analysis.

REALLOC

void REALLOC(void* block, size_t size)

This macro provides improved performance over the standard
realloc function. The syntax described by the standard realloc
function applies to this macro. Always use this macro instead of
the realloc function.

stateIntegrate

void stateIntegrate(integrand,integal,partial,lastintegrand)

double *integrand - a pointer to the state variable
used as the integrand

double *integral - a pointer to the current and
returned value of the integral

double *partial - a pointer to the returned partial
double *lastintegrand- a pointer to the last value of

the state variable representing
the integral

Performs an implicit integration of the form:

Xn+1 = Xn + hnXn+1 - ∆

that yields a relation between Xn+1 and Xn+1 at each time
point. The last term, ∆, represents the local truncation error.
This relation is combined with the circuit equations to produce
a system of algebraic equations for each timepoint.

The simplified system of equations is solved iteratively for each
timepoint, t

n+1
, like the DC analysis. This essentially reduces the

simulation to a series of N repetitive “quasi-dc” analyses where
N is the number of timepoints.

100

The solution to the intergral is obtained by functional iteration.
First, the solution x(n+1) is predicited by an explicict predictor,

Xn+10 = Xn + hnXn

and then corrected iteratively as,

Xn+1k = Xn + hnXn+1k+1

where k is the iteration number.

The implicit integration method allows this function to perform
integration or differentiation depending on the variable held
constatnt.

Integration is performed when the integral is allowed to vary and
the integrand is kept constant.

Example
...
double *i_in, *i_last, *charge, partial;
...
// initialize fast pointers

i_in = thisSTATEptr(CURRENT);
charge = thisSTATEptr(CHARGE);
i_last = lastSTATEptr(CURRENT);

...
cur = *i_in = INPUT(cap);//initialize inp. current

stateIntegrate(i_in,charge,&partial,i_last);

*i_in = cur; // reset to iterate

OUTPUT(cap) = *charge * one_over_c;
// output V = Q/C

PARTIAL(cap,cap) = partial * one_over_c; // 1/C
...

Differentiation is performed when the integrand is allowed to
vary and the integral is kept constant.

STATEINTEGRATE

101

API CALLS

Example
...
double *current, *currentlast, *charge, dt;
...
// initialize fast pointers

current = thisSTATEptr(CURRENT);
charge = thisSTATEptr(CHARGE);
currentlast = lastSTATEptr(CURRENT);

...
chrg = *charge = vcap * capvalue;

stateIntegrate(current,charge,&dt,currentlast);

*charge = chrg; // reset to iterate

OUTPUT(cap) = *current;
PARTIAL(cap,cap) = (capvalue / dt); // C/dt

...

Return Value
This function returns pointers to the integral, integrand, and
partial.

STATIC_VAR

typeof variable STATIC_VAR(variable)

typeof variable - The type given in the code models's
IFS file in the STATIC_VAR_TABLE

variable- The variable name given in the code model's
IFS file in the STATIC_VAR_TABLE

This macro resolves to an lvalue that accepts the type of data
specified in the Data_Type field of the code model’s
STATIC_VAR_TABLE. The argument is the variable name
given in the Static_Var_Name field. This macro is used to
establish static storage for variables that will be needed by the
code model.

102

If variable is a defined as a pointer STATIC_VAR(variable)
would resolve to a pointer. In this case, the code model is
responsible for allocating storage for the vector and assigning
the pointer to the allocated storage to STATIC_VAR(variable).

Return Value
The returned value is defined by the code model’s IFS file.

Example
/* assume freq is the Static_Var_Name and pointer is the

Data_Type*/
STATIC_VAR(freq) = MALLOC(NUM_NOTES*sizeof(double));

freq = STATIC_VAR(freq);

STRUCT_MEMBER_ID

char* STRUCT_MEMBER_ID

This is a UDN macro. It returns the member id for the data
structure.

STRUCT_PTR

void* STRUCT_PTR

This is a UDN macro used to retrieve a pointer to the structure
of the defined data type.

Return Value
A void pointer the the defined data type.

Example
void udn_real_initialize(INITIALIZE_ARGS)
{
double *real_struct = STRUCT_PTR

*real_struct = 0.0;
}

STATIC_VAR

103

API CALLS

STRUCT_PTR_1

void* STRUCT_PTR_1

This is a UDN macro used to retrieve a pointer to the structure
of the defined node data type.

Return Value
A void pointer to the defined data type.

Example
void udn_real_compare(COMPARE_ARGS)
{
double *real_struct1 = STRUCT_PTR_1
double *real_struct2 = STRUCT_PTR_2

// Compare structures
if((*real_struct1) == (*real_struct2))

EQUAL=TRUE;
else

EQUAL = FALSE;
}

STRUCT_PTR_2

void* STRUCT_PTR_2

This is a UDN macro used to retrieve a pointer to the structure
of the defined node data type.

Return Value
A void pointer the the defined data type.

Example
void udn_real_compare(COMPARE_ARGS)
{
double *real_struct1 = STRUCT_PTR_1
double *real_struct2 = STRUCT_PTR_2

104

// Compare structures
if((*real_struct1) == (*real_struct2))

EQUAL=TRUE;
else

EQUAL = FALSE;
}

thisSTATE

double thisSTATE(index)

int index - an integer value that corresponds to the
array index of the state variable allocation
you wish to use

This macro is used to retreive the current state variable given
by the argument index. The index refers to the array location
that is associated with the desired state variable.

Return Value
The returned value is always the state value for the current
timepoint. ISSPICE4 will automatically mark the state variables in
time so that the state for the current timepoint is always
returned.

thisSTATEptr

void* thisSTATEptr(index)

int index - an integer value that corresponds to the
array index of the state variable allocation
you wish to use

This macro is used to retreive a pointer to the current state
variable given by the argument index. The index refers to the
array location that is associated with the desired state variable.

STRUCT_PTR_2

105

API CALLS

Return Value
The returned value is always a pointer to the state value for the
current timepoint. ISSPICE4 will automatically mark the state
variables in time so that the state at the current timepoint is
always returned.

Example
#define CURRENT 0
#define CHARGE 1
....
double *i_in, *i_last, *charge;

if(INIT)
newState(2)

i_in = this STATEptr(CURRENT);
charge = thisSTATEptr(CHARGE);
i_last = lastSTATEptr(CURRENT);

...

A 2 element array of pointers was allocated using newState.
Element 0 was assigned to current (i_in and i_last) and element
1 was assigned to CHARGE.

T()

double T(int index)

index - An integer variable

This macro is used to obtain the time value for the index passed.
An index of 0, T(0), represents the current time. An index of 1,
T(1), represents the previous time point. Therefore, (T(0) - T(1))
represents the last timestep.

Return Type
A double representing the time value for the specified index.

106

TEMPERATURE

double TEMPERATURE

The macro is used to obtain the operating temperature set for
the current sinulation.

Return Type
A double representing the current analysis temperature.

TIME

double TIME

Time is used to retrieve the current time point in a transient
analysis.

Return Type
Returns a double representing the current time point.

TOTAL_LOAD

double TOTAL_LOAD(input port)
double TOTAL_LOAD(input port[i])

input port - represents the name of the non-vector
input port

input port[i]- represents the i'th port in the vector
input port

The information returned by this function can be used by a code
model, after the INIT pass, to modify the delays it posts with its
output states and strengths. Note that this macro can also be
used by non-digital event-driven code models (see LOAD(),
above).

Return Value
This macro returns a double value representing the total
capacitive load seen on the specified node.

TEMPERATURE

107

API CALLS

udn_XXX_compare

void udn_XXX_compare(COMPARE_ARGS)

COMPARE_ARGS - this argument resolves to the following;
void *evt_struct_ptr_1
void *evt_struct_ptr_2
Mif_Boolean_t *evt_equal

Use the STRUCT_PTR_1 and STRUCT_PTR_2 to retrieve
pointer variables. These macros resolve to *evt_struct_ptr_1
and *evt_struct_ptr_2 respectively. Compare the two struc-
tures and assign either TRUE or FALSE to EQUAL. The equal
macro resolves to a Mif_Boolean_t value. This is a Required
Function.

Example
void udn_int_compare(COMPARE_ARGS)
{
 int *int_struct1 = STRUCT_PTR_1;
 int *int_struct2 = STRUCT_PTR_2;

 /* Compare the structures */
 if((*int_struct1) == (*int_struct2))
 EQUAL = TRUE;
 else
 EQUAL = FALSE;
}

udn_XXX_create

void udn_XXX_create(CREATE_ARGS)

CREATE_ARGS - this argument resolves to the following;
void **evnt_struct_ptr

Allocate space for the data structure defined for the User-
Defined Node to pass data between models. Then assign the
pointer created by the storage to MALLOCED_PTR.

XXX is replaced
with the UDN
name. See
Code Model
Development
for more details.

108

MALLOCED_PTR resolves to a pointer to evt_struct_ptr. This
is a Required Function.

Example
void udn_int_create(CREATE_ARGS)
{
 // Malloc space for an int
 MALLOCED_PTR = MALLOC(sizeof(int));
}

udn_XXX_dismantle

void udn_XXX_dismantle(DISMANTLE_ARGS)

DISMANTLE_ARGS - this argument resolves to the following;
void *evt_struct_ptr

Use the STRUCT_PTR, which resolves to *evt_struct_ptr, to a
assign a pointer variable of defined type and then free any
allocated substructures (but not the structure itself!). If there are
no substructures, the body of this function should be left null.

Example
void udn_int_dismantle(DISMANTLE_ARGS)
{
 // free internally malloc�ed items
}

udn_XXX_copy

void udn_XXX_copy(COPY_ARGS)

COPY_ARGS - this argument resolves to the following;
void *evt_input_struct_ptr
void *evt_output_struct_ptr

Use the INPUT_STRUCT_PTR and OUTPUT_STRUCT_PTR
macros, which resolve to *evt_input_struct_ptr and

UDN_XXX_CREATE

109

API CALLS

*evt_output_struct_ptr, to assign pointer variables of the
defined type and then copy the elements of the input structure
to the output structure. This is a required function.

Example
void udn_int_copy(COPY_ARGS)
{
 int *int_from_struct = INPUT_STRUCT_PTR;
 int *int_to_struct = OUTPUT_STRUCT_PTR;

 // Copy the structure
 *int_to_struct = *int_from_struct;
}

udn_XXX_initialize

void udn_XXX_initialize(INITIALIZE_ARGS)

INITIALIZE_ARGS - this argument resolves to;
void *evt_struct_ptr

Use the STRUCT_PTR macro, which resolves to
*evt_struct_ptr, to assign a pointer variable of defined type and
then initialize the value of the structure. This is a required
function.

Example
void udn_int_initialize(INITIALIZE_ARGS)
{
 int *int_struct = STRUCT_PTR;
 // Initialize to zero
 *int_struct = 0;
}

XXX is replaced
with the UDN
name. See
Code Model
Development
for more details.

110

udn_XXX_invert

void udn_XXX_invert(INVERT_ARGS)

INVERT_ARGS - this argument resolves to;
void *evt_struct_ptr

Use the STRUCT_PTR macro, which resolves to *evt_struct_ptr,
to assign a pointer variable of the defined type, and then invert
the logical value of the structure. This is an optional function. If
you do not plan to support the inversion netlist key, “~”, then the
function should be left empty. See the udn_XXX_dismantle
function for an example of a blank function.

Example
void udn_int_invert(INVERT_ARGS)
{
 int *int_struct = STRUCT_PTR;
 // Invert the state
 *int_struct = -(*int_struct);
}

udn_XXX_ipc_val

This is a UDN Macro used to provide output for UDNs. This
function is not currently supported. Node bridges should be
constructed to translate the UDN data to analog. Output can
then be obtained from standard IsSpice4 output statements. An
empty entry should be placed in the UDN definition file.

Example
void udn_real_ipc_val(IPC_VAL_ARGS)
{
}

UDN_XXX_INVERT

111

API CALLS

udn_XXX_plot_val

This is a UDN Macro used to provide output for UDNs. This
function is not currently supported. Node bridges should be
constructed to translate the UDN data to analog. Output can
then be obtained from standard IsSpice4 output statements. An
empty entry should be placed in the UDN definition file.

Example
void udn_real_plot_val(PLOT_VAL_ARGS)
{
}

udn_XXX_print_val

This is a UDN Macro used to provide output for UDNs. This
function is not currently supported. Node bridges should be
constructed to translate the UDN data to analog. Output can
then be obtained from standard IsSpice4 output statements. An
empty entry should be placed in the UDN definition file.

Example
void udn_real_print_val(PRINT_VAL_ARGS)
{
}

udn_XXX_resolve

void udn_XXX_resolve(RESOLVE_ARGS)

INVERT_ARGS - this argument resolves to;
int evt_input_struct_ptr_array_size
void **evt_input_struct_ptr_array
void *evt_output_struct_ptr

Use the INPUT_STRUCT_PTR_ARRAY macro to assign a
variable declared as an array of pointers of the defined type -
e.g.:

XXX is replaced
with the UDN
name. See
Code Model
Development
for more details.

112

UDN_XXX_RESOLVE

<type> **struct_array;
struct_array = INPUT_STRUCT_PTR_ARRAY;

Then, the number of elements in the array may be determined
from the integer valued INPUT_STRUCT_PTR_ARRAY_SIZE
macro which resolves to evt_input_struct_ptr_array_size.

Use the OUTPUT_STRUCT_PTR macro, which resolves to
*evt_output_struct_ptr, to assign a pointer variable of the
defined type.

Scan through the array of structures, compute the resolved
value, and assign it into the output structure.

Example
void udn_int_resolve(RESOLVE_ARGS)
{

int **array = INPUT_STRUCT_PTR_ARRAY;
int *out = OUTPUT_STRUCT_PTR;
int num_struct = INPUT_STRUCT_PTR_ARRAY_SIZE;
int sum;
int i;
// Sum the values
for(i = 0, sum = 0; i < num_struct; i++)
sum += *(array[i]);

// Assign the result
*out = sum;

}

113

EXAMPLES

A Simple Gain Block

This example will use the files located in the Simple DLL
directory found under the SRC directory of the CMSDK. This
DLL project consists of a simple analog code model named
Gain. To familiarize you with the process of creating a code
model the following items will be covered;

• Examine DLL project file and support files.

• Examine the IFS and MOD files necessary to develop a
code model.

• Compile a release version of the code model.

• Compile a debug version of the code model.

• Set a break point and examine a variable.

Examples

114

The DLL Project
The project file for this example is called Simple.Mak. The file
is located in the Simple subdirectory under SRC in your
CMSDK directory structure.

The Simple subdirectory is termed the DLL directory. All files
necessary to construct a code model DLL will be found in this
directory or subdirectories below this directory.

DLL directories must have an ident.h file and a modpath.lst and/
or a udnpath.lst file, as well as the Visual C++ project files.
Subdirectories below the DLL directory are termed model, or
UDN, directories. A model directory is where the .MOD and .IFS
files describing a particular code model will be located. UDN
directories will contain a standard C file describing the UDN.

• Open the Simple project by locating the project file,
Simple.Mak for Visual C++ 2.0 and Simp11.Mak for
Visual C++ 1.1, in the File Manager and double clicking
on it.

• Locate Ident.h in the project and open the file.

This file contains information that sets license levels and an ID
string in the DLL. Any string, up to 256 characters, can be used
as an ID. This string will be used as part of the return value when
the DLL is loaded.

A SIMPLE GAIN BLOCK

115

EXAMPLES

• Open the Modpath.lst file.

This file contains a list of Model subdirectories that will be part
of the DLL. Each Model directory should be placed on a
separate line. The “\” character should be placed after each line
except the last. It is used as a continuation line delimiter during
preprocessing. This file is used by the preprocessing makefiles
that convert the .Mod files into .C files to be used with Visual
C++.

• Close the Modpath.lst without saving any changes.

Interface Specification File (.IFS)
The IFS file for the Simple project is found in the GAIN directory
and is called ifspec.ifs.

• Open the ifspec.ifs file located in the GAIN model
directory.

This file is quite simple and describes all the input and output
ports and model parameters for the code model. The Name
Table provides the name of the model and the C function name
used to represent the model within ISSPICE4. The Port Table
describes all the ports of the code model. The Parameter Table
describes all the characteristics of the model parameters that
can be accessed from the code model’s .Model line.

This IFS file is preprocessed by the CMPP utility into a standard
C file and two header files. The C file will be given the same
name as the .MOD file with an “!” appended to the end. This file
contains all the data structures necessary for interfacing the
new code model. The header files are used by the main source
file for the DLL (DLL_MAIN.C in the CMCOMMON directory).
You will never have to alter or manipulate the header files or the
main DLL source file. Please take a moment to explore this file
and the description in the Code Model Development Chapter.
When you are finished;

• Close the IFS file without saving any changes.

A complete
description of
the IFS file can
be found in the
Code Model
Developement
Chapter.

116

Model definition File (.MOD)
The model definition file for the gain model is located in the
GAIN model directory under the Simple DLL directory.

• Open GAIN.MOD.

void cm_gain(ARGS)
{
Complex_t ac_gain;
double mygain;

mygain = PARAM(gain);

if(ANALYSIS != MIF_AC) {
OUTPUT(out) = PARAM(out_offset) + mygain *

(INPUT(in) + PARAM(in_offset));
PARTIAL(out,in) = PARAM(gain);

}
else {
ac_gain.real = PARAM(gain);
ac_gain.imag= 0.0;
AC_GAIN(out,in) = ac_gain;

}
}

The .MOD file describes the behavior of the code model. The
function name, cm_gain, matches the name used in the IFS file.
The ARGS argument expands into a private structure used by
ISSPICE4. It will be visible through the debugger but the contents
will not make much sense and will not be supported. All access
to the simulator from the code model should be done through
the API calls provided.

The code demonstrates the basic format of a code model. First
all variables are declared. Next, the API call PARAM is used to
get the “gain” .Model parameter which is used to initialize
mygain. At this point, the analysis types are processed. The if-
else block detects the transient and DC analysis and provides
the output and partial derivative as required. If the ANALYSIS
API call returns MIF_AC then the AC analysis response is
processed. The AC_GAIN macro is used to provide ISSPICE4
with the correct gain output.

A SIMPLE GAIN BLOCK

117

EXAMPLES

Compiling a Debug Version
Once the mode definition file has been created we can build a
debug version of the DLL to test the new gain model.

• Select the debug build option for your version of Visual
C++.

• Select “Convert MOD to C” from the Visual C++ Tools
menu.

This runs the CMPP utility provided with the CMSDK. Once the
preprocessing is complete;

• Select Build from the Project menu of Visual C++.

Important Note: The debug version of the DLL will be placed
in the location chosen for output. For those using Visual C++ 2.0
the output DLL will be called Simple.DLL and located in the \IS
directory of your ICAP/4Windows installation. For those using
Visual C++ 1.1 the DLL will be named Simp11.DLL and placed
in the Simple DLL directory.

Testing The DLL
To test the new DLL simply select Go from the Visual C++’s
Debug menu. The default settings for this project will cause it to
use the ISSPICE4 executable shipped with the kit and the DLL
you just built. To view or change the defaults please refer to
Appendix C or explore the options of this example project.

Setting A Breakpoint
To set a breakpoint;

• Open Gain.Mod if it is not already open.

• Place the text cursor on the following line:

mygain = PARAM(gain);

118

• Select the breakpoint button from the Toolbar or Select
Breakpoint from the Debug menu and select the Add
button in the resulting dialog.

• After the breakpoint has been set select Go from the
Debug menu.

If you are running Visual C++ 1.1 the Find Source dialog
requesting the location of the .MOD file will appear the first time
a breakpoint is set. Append the GAIN directory to the path
provided and select the OK button.

Examining Data
When the breakpoint is reached we can examine the data and
determine the status of the code model. Any variable can be
viewed using the QuickWatch command from the Debug menu.

• Select the mygain variable.

• Select QuickWatch from the Debug menu or select the
Watch button from the toolbar.

The current value of mygain will be displayed. This value is the
value of the model parameter as entered on the .Model line in
the netlist. The PARAM API call does not evaluate to a value
that can be watched. Neither does the argument to the PARAM
API call. The argument, gain, is a the name of the parameter
whose value is to be returned. It is not a variable.

Compiling a Release Version
To build a release version of the DLL;

• Simply select the release option from the project set-
tings and select Build from the Project menu.

A SIMPLE GAIN BLOCK

119

EXAMPLES

A Capacitor Model

This example will use the files located in the Samples DLL
directory found under the SRC directory of the CMSDK. This
DLL project consists of a several different code models. The
two that will be investigated in this example are CAPH and
CAPG. These code models use two different approaches to
implement a capacitor. Both code models accept a linear
temperature coefficient. The default for this coefficient is 0.
Hence, by default the code models will produce results equiva-
lent to the default capacitor found in ISSPICE4. These two code
models will be used to cover the following topics;

• Input and Output Specifications
• The structure of an analog code model
• State variables and static instance variables.
• Integration and differentiation
• Calculating one time parameters

Input and Output Specifications
The differences in the two approaches to the capacitor start with
the specification of the port type in the IFS file. CAPH uses a
differential resistance, specified as “hd” in its IFS file, which
makes it a current controlled voltage source. CAPG uses a
differential conductance, specified as “gd” in its IFS file, which
makes it a voltage controlled current source. These definitions
directly effect the method by which the code model can produce
the correct voltage-current relationships. The definitions also
control the methods used to implement initial conditions. Since
CAPH is a voltage controlled current source the only way to
implement an initial voltage is through an iterative solution.
CAPH provides an initial voltage directly.

Since CAPH has only a current as input the only way to
generate the correct V-I characteristics is to integrate the
current to obtain charge. The resulting charge is then divided by
the calculated capacitance value to obtain the output voltage.

120

Since CAPG has only a voltage to start with the only way to
generate the correct V-I characteristics is to multiply the voltage
and the calculated capacitance value to obtain charge. Then
differentiate the charge to obtain the output current.

Because the ports were defined as differential ports the input
and output ports are implicitly the same. Throughout the code
for the capacitor models you will see API calls like INPUT(cap)
and OUTPUT(cap). The name of the port, for both CAPH and
CAPG, is cap and it represents their input and output.

Analog Code Model Structure
The following explanations will use the CAPH code model as a
foundation. When appropriate the CAPG code model will be
explained to highlight significant differences. The structure of
the two code models are essentially the same. You should print
the .MOD and IFS files for each of the code models (CAPH and
CAPG) so you can follow along.

The name of the code model procedure used in the code model
definition file must match the name specified in the IFS file. For
this example;

void cm_caph (ARGS)

All code models pass the parameter ARGS. As discussed in
earlier chapters this is a private data structure. All information
required within the code model can be obtained from the API
calls provided. There will be no need to access the data passed
in ARGS directly.

The next section of the code model declares all local variables.
For this model we use a Complex_t data structure and various
doubles and pointers to doubles.

Complex_t ac_gain; // structure to store the ac gain
double partial, // partial returned from stateIntegrate

dtmp, // intermediate variable for ac gain calculation
cur, // stores current for transient iteration
v_out, // used to calculate the input voltage

A CAPACITOR MODEL

See the
ISSPICE4 User’s
Guide for more
details.

121

EXAMPLES

*capvalue, //stores the calculated capacitance value
*one_over_c, // stores the reciprocal of the capacitance
*r_shunt, // shunt resistance for voltage calculation
*charge, // stores the charge state information
*i_in, // stores the current state information
*i_last; // stores the last, previous, state

enum Vars{R_SHUNT, CAPVALUE, ONE_OVER_C};
// enum for local Var pointers

The Complex_t structure stores the real and imaginary portions
of a complex number. This will be used to pass the calculated
gain to the output of the capacitor for the AC analysis.

All doubles are used for intermediate calculations. These
variables are not per-instance variables, they do not keep their
value from iteration to iteration, and will have to be reset upon
every iteration. The pointers to doubles are used to store per-
instance variables and state variables. These variables are
allocated during ISSPICE4's INIT routine as shown below.

if(INIT) {
// allocate storage for state and local variables

newState(2); // use 2 states - current and charge
newVar(ONE_OVER_C+1);

// retrieve pointers to allocated local variables
r_shunt = getVarPtr(R_SHUNT);
capvalue = getVarPtr(CAPVALUE);
one_over_c = getVarPtr(ONE_OVER_C);

// assign values to local variables
*r_shunt = 1/gMIN;
*capvalue =PARAM(c) * (1.0 + PARAM(TC) * deltaTemp);
*one_over_c = 1 / *capvalue;

}
else{
// initialize local variable pointers

r_shunt = getVarPtr(R_SHUNT);
capvalue = getVarPtr(CAPVALUE);
one_over_c = getVarPtr(ONE_OVER_C);

}

The Complex_t
structure is
defined in the
definition of
AC_GAIN
found in the
API Calls
chapter.

122

The newState API call is used to allocate pointers to storage for
state variables. These state variables are used to store the
states for every time point accepted by ISSPICE4. The newVar
API call establishes a per-instance static variables. Each of
these API calls are documented in the API Calls chapter.

In order to simplify access to the per-instance variables an
enumeration was declared (enum Vars). The enumerated
values are use to reference the proper memory locations when
calls to getVarPtr are made.

After allocating storage for the per-instance pointers the
getVarPtr API call is used to assign the pointer to a local pointer
to a double. These pointers to doubles are used to store the
results of one-time parameter calculations. This method pre-
vents the parameters from being calculated every iteration as
would be the case if local variables were used. (See the
capacitance calculation in CPAG.MOD for the latter.)

The r_shunt variable is used in CAPH to calculate a voltage
output for the DC operating point when no ic is given. (V = IR)

The else clause of the INIT section is used to fetch the pointers
to the per-instance static variables previously allocated, and
calculated, during the initialization pass.

The next step is to assign state variables to the pointers
allocated with newState. This is done with the following code.

// initialize fast pointers
i_in = thisSTATEptr(CURRENT);
charge = thisSTATEptr(CHARGE);
i_last = lastSTATEptr(CURRENT);

The API call thisSTATEptr returns a pointer to the current state
value, which is assigned to the appropriate pointers to doubles.
The lastSTATEptr API call returns a pointer to the last, previous
state, which is also assigned to a pointer to a double.

A CAPACITOR MODEL

123

EXAMPLES

As with the enumeration used to reference the memory loca-
tions allocated with newVar, the arguments to the functions
retrieving the state variable pointers are defined prior to the
procedure call as:

#define CHARGE 1
#define CURRENT 0

This simply provides an easy way to reference the pointers
when calling thisSTATEptr or lastSTATEptr. Either a definition
of enumeration can be used.

Now that all parameters have been calculated and all state and
per-instance variables have been initialized, the analysis types
can be processed. This can be done through a switch-case
arrangement or with if-else if-else clauses. The latter was used
in this example.

DC Analysis
The DC analysis for the CAPH code model is detected by the
following code.

if(ANALYSIS == MIF_DC){
// Calculate the DC analysis

if(!PARAM_NULL(ic) && isMODETRANOP){
OUTPUT(cap) = v_out = PARAM(ic);
PARTIAL(cap,cap) = 0.0;
*i_in = v_out/r_shunt;

}
else{
*i_in = INPUT(cap);
v_out = *i_in * *r_shunt
OUTPUT(cap) = v_out;
PARTIAL(cap,cap) = *r_shunt;

}
*charge = v_out * *capvalue;
lastSTATE(CURRENT) = thisSTATE(CURRENT);

}

124

The ANALYSIS API call is used to indicate the analysis mode.
The if statement uses MIF_DC and the return value of ANALY-
SIS to detect the DC analysis.

The IFS file for CAPH, and CAPG, include a model parameter,
“ic”, to provide an initial condition. To ensure than the initial
condition is set correctly, the PARAM_NULL API call is used to
determine if the parameter was entered. The PARAM_NULL
API call is combined with the isMODETRANOP API call in
CAPH to apply the initial condition only during the transient
operating point. When either of these conditions fail the input
current is used to calculate the output and assigned to the
output port using the OUTPUT API call. The equivalent DC
analysis code for CAPG is given below;

if(!PARAM_NULL(ic) && shouldInit)
vcap = PARAM(ic);

else
vcap = INPUT(cap);

if(ANALYSIS == MIF_DC){
// Calculate the DC analysis

*charge = vcap * capvalue;
lastSTATE(CHARGE) = thisSTATE(CHARGE);
OUTPUT(cap) = 0;
PARTIAL(cap,cap) = 0.0;

}

Notice the additional code before the DC analysis. This is used
to establish the initial condition, if requested, and to iterate to the
correct DC voltage. Unlike CAPH, CAPG will only set the initial
condition if the UIC option is present on the .TRAN line. This is
equivalent to the standard SPICE capacitor. Also, because
CAPG is essentially a current source the only way to set the
initial voltage is through iteration.

As mentioned earlier, the port types for both CAPH and CAPG
are differential. Therefore, the same port name will be used to
reference the input and output port. This can be seen in the call
to the, INPUT, OUTPUT, and PARTIAL API calls.

A CAPACITOR MODEL

125

EXAMPLES

Common to both implementations is the code that calculates
charge and the code that establishes the current and last state
variables for the states used for to calculate the respective
outputs. CAPH uses the current, i_in, to calculate the output.
CAPG uses charge to calculate the output. In order to ensure
that the DC value is carried to the transient analysis the
thisSTATE and lastSTATE API calls are used.

AC Analysis
The AC analysis is detected the same way as the DC, but using
MIF_AC. The AC analysis code for CAPH is given below;

else if(ANALYSIS == MIF_AC){
// Calculate the AC analysis
// gain = 1/Cs
dtmp = 1 /(*capvalue * (realFreq * realFreq + imagFreq *
imagFreq));

ac_gain.real = realFreq * dtmp;
ac_gain.imag = (-imagFreq) * dtmp;
AC_GAIN(cap,cap) = ac_gain;

}

In this section the real and imaginary components of the AC
gain are calculated and assigned to the output using the
AC_GAIN API call. By default SPICE provides the imaginary
component, jω, and all calculations are relative to this. In order
for new code models to be compatible with future additions of
the ISSPICE4 pole-zero analysis, it is recommended that calcu-
lation include both the real and imaginary components of the
frequency axis. Once the AC gain is calculated it is passed to
the AC_GAIN API call.

As a comparison the AC analysis code for CAPG is provided.

else if(ANALYSIS == MIF_AC){
// Calculate the AC analysis
// gain = Cs

ac_gain.real = realFreq * capvalue;
ac_gain.imag = (-imagFreq) * capvalue;
AC_GAIN(cap,cap) = ac_gain;

}

126

Transient Analysis
As was the case for the DC and AC analyses the ANALYSIS
API call is used in a comparison against MIF_TRAN to detect
the transient analysis. The code for the CAPH transient analy-
sis is given below.

else if(ANALYSIS == MIF_TRAN){
// Calculate the Transient analysis

if(isMODEINITTRAN){
// process initial conditions for the model

lastSTATE(CURRENT) = thisSTATE(CURRENT);
}

// these calculations are processed for every iteration
// initialize cur for iteration

cur = *i_in = INPUT(cap);

stateIntegrate(i_in,charge,&partial,i_last);

// reset to iterate
*i_in = cur;

// output Q=CV or V = Q/C
OUTPUT(cap) = *charge * *one_over_c;
PARTIAL(cap,cap) =partial * *one_over_c; // 1/C
}

}

For the initial pass we use the isMODEINITTRAN API call to
detect the first timepoint and, in conjunction with PARAM_NULL,
set initial conditions as we did in the DC analysis. If “ic” is not
present the transient analysis proceeds to calculate the correct
output.

First the input current is read and assigned to the local variable
cur and the state variable *i_in. Next we integrate current to
obtain charge. The charge is then used to calculate the output
voltage.

Q = CV or V=Q/C

A CAPACITOR MODEL

127

EXAMPLES

The implicit integration method employed by ISSPICE4 allows the
stateIntegrate API call to integrate, or differentiate, depending
on the which argument is held constant. In this case The local
variable cur was used to keep *i_in from changing. This forces
ISSPICE4 to iterate, performing integration, until a solution is
determined.

In the case of CAPG, shown below, the local variable qvin is
used to hold the charge constant. This forces ISSPICE4 to iterate,
performing differentiation, until a solution is determined.

else if(ANALYSIS == MIF_TRAN){
// Calculate the Transient analysis
// these calculations are processed for every iteration
// initialize qvin for iteration

*charge = qvin = vcap * capvalue;

if(isMODEINITTRAN)
lastSTATE(CHARGE) = thisSTATE(CHARGE);

stateIntegrate(current,charge,&dt,currentlast);

if(isMODEINITTRAN)
*currentlast = *current;

else
// reset to iterate

*charge = qvin; // iterate to make this true

// output Q=CV or V = Q/C
{
double diout_dvin = capvalue / dt;
OUTPUT(cap) = *current;
PARTIAL(cap,cap) = diout_dvin;
}
}

}

128

Building a Debug DLL
Building a code model DLL is a two step process;

• Run “Convert MOD to C” from the Tools menu.

• Select Build from the Project menu.

The first step is necessary to process some of the API calls. The
settings for the “Convert Mod to C” tool is explained in the
Adding Tools To Visual C++ section. Essentially it calls a
makefile that runs the CMPP preprocessor distributed which
the CMSDK. CMPP reads the files associated with the code
model DLL, (modepath.lst, udnpath.lst, ifspec.ifs etc.) and
creates various header and C files in the DLL and MOD
directories. Once these files are created the DLL is built as a
normal Visual C++ project.

To build a Debug version;

• Select the Debug build option for your version of Visual
C++.

• Build the code model DLL by selecting Build from the
Project menu.

Visual C++ 1.1 does not make as good a connection as Visual
C++ 2.x between the errors displayed in the output window and
the contents of the .MOD file. Therefore, if you are using Visual
C++ 1.1 you will not be able to double click on compiler errors
in the output window and have the line selected. However, the
line number and filename are given so you can manually open
the file and locate any errors.

Before setting a breakpoint the proper debug environment must
be established. This is covered in the Setting Up The Debug
Environment section of the Code Model Development chapter.
For this example the debugging environment is set except for
coping SPICE4.EXE into the Samples directory.

• Copy SPICE4.EXE into the \SAMPLES directory.

A CAPACITOR MODEL

In order for
“Convert MOD
to C” to run
correctly you
must remember
to save your
changes when
editing the
.MOD files.

129

EXAMPLES

Setting A Breakpoint
After the build has completed the project should will act like any
Visual C++ project. All of the functions under the Debug menu,
Step Over, Step Into, etc., will work as expected. Note, how-
ever, there is no source code, or debug information, provided
for the API calls so you will not be able to use the debug
functions to access any of the API calls.

The Quickwatch function can be used to view any variable
within the code except the API calls. To view the result of an API
call you should use a temporary variable. For example, con-
sider the code shown below.

// assign values to local variables
*r_shunt = 1/gMIN;
*capvalue =PARAM(c) * (1.0 + PARAM(TC) * deltaTemp);
*one_over_c = 1 / *capvalue;

}

The API call PARAM , or the argument c, cannot be viewed
using the Quickwatch function. PARAM cannot be viewed
because this API call is translated into the proper IsSpice4 call
according to the argument passed. The argument, c, cannot be
viewed because it is not a variable. It is a keyword defined in the
IFS file to reference the capacitance model parameter. In order
to view the value returned by PARAM(c) you should assign the
result to a variable, such as myparam, and then view and use
myparam in the equation.

// assign values to local variables
*r_shunt = 1/gMIN;
myparam = PARAM(c);
*capvalue = myparam * (1.0 + PARAM(TC) * deltaTemp);
*one_over_c = 1 / *capvalue;

}

Building a Release DLL
Building a release version of a DLL is as simple as selecting the
release option for Visual C++ and then selecting Build from the
Project menu.

130

A Digital OR Gate

This example will use one of he files associated with the
Samples DLL called tut_or.mod. This can be found in the tut_or
subdirectory under the Samples DLL directory. This example
will cover;

• The body of an event driven digital code model.

• State variables and per-instance local static variables.

• Processing event-driven output.

The format for an event-driven code model is much the same
as an analog code model. The main exception is that there is no
AC analysis support for event driven simulations. Therefore,
the only analyses that need to be detected are DC and Tran-
sient. The last example demonstrated how to detect these
analyses using the ANALYSIS API call and the MIF_DC and
MIF_TRAN definitions. The event driven code model uses
these same techniques.

As with the analog code model, all code models start with the
function declaration passing the ARGS API structure.

void cm_tut_or(ARGS)

After this, the internal variables are declared using standard C
notation.

int i, // generic loop counter
*size, // number of input ports
new_out;// storage for new output value

Digital_State_t *out_old, // previous output
input; // storage for input

The pointer, *size, is used to store the number of input ports for
the code model instance. The new_out variable is used to store
the new output for the current event. This value is compared to

A DIGITAL OR GATE

131

EXAMPLES

the previous output and a new output is generated if the two are
different. The Digital_State_t typedef is used to facilitate digital
state values. The definition for this is a typedef enum described
as:

typedef enum{
ZERO,
ONE,
UNKNOWN,

} Digital_State_t;

The pointer, *old_output, is used as a state variable to hold the
previous value of the code model. The use of this pointer and
the new_output integer will be covered shortly.

The first block of code is called only when the code model
instance is initialized. This is detected by the INIT API call. This
section of code is used for the same purposes as in the analog
code model, to initialize memory storage and compute one-
time parameter computations.

if(INIT) {

/* allocate storage for the outputs */
out_old = (Digital_State_t *) cm_event_alloc(0,sizeof(Digital_State_t));
/** allocate and retrieve size **/
size = (int *) cm_event_alloc(1,sizeof(int));
*size = PORT_SIZE(in);

for (i=0; i< *size; i++) LOAD(in[i]) = PARAM(input_load);

}

The first step is to allocate memory. This is done using the
cm_event_alloc API call. The arguments to this call are an
integer tag for identification and the size of memory to be
allocated. The return is a void pointer that is cast to the
appropriate type. The Digital_State_t pointer, *old_output, is
assigned a 0 tag for identification. The sizeof function is used
to pass the required amount of memory.

132

The next step is the allocation of memory for the integer pointer,
*size, to hold the number of input ports for the code model
instance. The PORT_SIZE API call is used to return the number
of ports for this instance of the code model.

At this point we also set the capacitive load of the input ports.
This is done by looping through the input ports and using the
PARAM API call to retrieve the load parameter from the .Model
line and set these values using the LOAD API call.

for (i=0; i< *size; i++) LOAD(in[i]) = PARAM(input_load);

Performing this in the INIT block reduces the number of times
this loop is called. Remember the model is called for every
iteration. Try to place one-time code in the initialization block.

The else clause of the INIT block is performed on all subsequent
calls to the code model.

else {

/* retrieve storage for the outputs */
out_old = (Digital_State_t *) cm_event_get_ptr(0,0);
size = (int *) cm_event_get_ptr(1,0);

}

In this section we use cm_event_get_ptr to retrieve the pointers
allocated during initialization. The integer tag assigned by
cm_event_alloc is passed in order to retrieve the correct
pointer. The second parameter is the timepoint of interest. For
more information please consult the API Calls chapter.

Now that initialization is complete we start processing the
information necessary to compute an output.

for (i=0; i< *size; i++) {
/* make sure this input isn�t floating... */

if (FALSE == PORT_NULL(in)) {

A DIGITAL OR GATE

133

EXAMPLES

/* if a 1, set *out high */
if (ONE == (input = INPUT_STATE(in[i]))) {

new_out = ONE;
break;

}
/* if an unknown input, set *out to unknown */

else if (UNKNOWN == input) {
new_out = UNKNOWN;

}
else

new_out = ZERO;
}

else {
/* at least one port is floating. output is unknown */

new_out = UNKNOWN;
break;

}
}

This section computes the new output, new_output, depending
on the current inputs. It does this by looping through all inputs,
checking to verify that the input is connected (PORT_NULL API
call) and then comparing the input against the known available
state values, ONE, UNKNOWN, and ZERO. The value of
new_output is determined by the first ONE value encountered.

Once the new_output has been calculated we can determine if
the code model should post a new output. This is important
because the simulation algorithm is event driven. Each change
in an output posts an event in the queue to be processed.
Therefore, the speed of the event driven simulation is deter-
mined by the number of events that are posted. So if an event-
driven code model does not need to post an event it should not
do so. It should set the API call OUTPUT_CHANGED to
FALSE. This tells the event algorithm that the output of this code
model will not generate an event and further processing is not
required. The following section of code describes this se-
quence.

134

if (new_out != *out_old) { // output value is changing
if (ANALYSIS == DC) { // DC output w/o delays

OUTPUT_STATE(out) = new_out;
}
else { // Transient Analysis

switch (new_out) {
// fall to zero value

case 0: OUTPUT_STATE(out) = new_out;
OUTPUT_DELAY(out) = PARAM(fall_delay);
break;

// rise to one value
case 1: OUTPUT_STATE(out) = new_out;

OUTPUT_DELAY(out) = PARAM(rise_delay);
break;

// unknown output
default:

OUTPUT_STATE(out) = new_out;
// based on old value, add rise or fall delay

if (0 == *out_old) { // add rising delay
OUTPUT_DELAY(out) = PARAM(rise_delay);

}
else { // add falling delay

OUTPUT_DELAY(out) = PARAM(fall_delay);
}

break;
}

}
OUTPUT_STRENGTH(out) = STRONG;
*out_old = new_out;
}
else{

OUTPUT_CHANGED(out) = FALSE;
}

Notice that the first comparison is used to determine if an output
needs to be posted. If the comparison fails the
OPUTPUT_CHANGED API call is used. Otherwise the desired
output is posted using the OUTPUT_STATE API call. Also,
notice that a delay is assigned each of these outputs. Notice
also that all outputs are assigned a strength using the
OUTPUT_STRENGTH API call. This is used by the digital node
type to resolve competing driving values.

A DIGITAL OR GATE

135

EXAMPLES

User-Defined Node

In this example we will cover XDL’s ability to construct and
simulate User-Defined Node and signal types. The files asso-
ciated with this example can be found under the Real DLL
directory. This example will cover:

• What a User-Defined Node is.

• An overview of the algorithms involved with using UDNs.

• Creating a UDN definition file.

User-Defined Nodes
User defined nodes are data structures that store a component’s
data and the functions that operate on that data. As an example,
consider the Digital Node. This node type stores two values, a
logic level and a logic strength. This combination produces the
state of a digital node. Also defined within the digital node are
functions that allow ISSPICE4 to perform operations on the data
such as, allocate storage, compare node values, resolve dis-
crepancies, and copy node values. These functions define the
behavior of the data stored within the node type.

Algorithms using the UDN
All UDNs operate using the event-driven simulator of ISSPICE4.
This restricts the UDN to operating in the DC and Transient
analyses only. The general operation of UDNs is as follows;

• Before any a DC and/or Transient analysis begins, the
UDN’s udn_XXX_create and udn_XXX_initialize functions
are called for every UDN port.

• For the DC operating point, the UDN compares the values
of all connected ports using the udn_XXX_compare func-
tion. This is done for every iteration until a solution is
obtained.

136

• If the simulation successfully computes the DC operating
point, new data elements are created using udn_XXX_create
to store the value calculated. The new values are copied
into the new data elements using udn_XXX_copy.

• If a transient analysis is being performed the first event is
extracted from the event queue. The previous calculations
are repeated until a solution is found. Then another event
is extracted from the event queue. This process continues
until all events are processed.

A UDN definition file
The definition file for a UDN consists of two sections; functions
describing the data and the behavior of the data, and a structure
used to interface the UDN to the event-driven algorithm. We will
start by discussing the latter.

At the bottom of every UDN definition file is the data structure
that defines the interface between the algorithm and the models
that use the node. The Evt_Udn_Info_t structure contains the
name of the node to be used, “real2”, a brief comment about the
node type, and a list of functions used to describe the node’s
behavior.

Evt_Udn_Info_t udn_real2_info = {

�real2�,
�example real node�,

udn_r2_create,
udn_r2_initialize,
udn_r2_copy,
udn_r2_compare,
udn_r2_invert,
udn_r2_dismantle,
udn_r2_resolve,
udn_r2_plot_val,
udn_r2_print_val,
udn_r2_ipc_val

};

USER-DEFINED NODE

137

EXAMPLES

The following functions are required to describe the correct
behavior of a UDN;

udn_r2_create
udn_r2_initialize
udn_r2_copy
udn_r2_compare

The remaining functions are optional. This does not mean they
can be left out of the definition file. A function must exist in the
definition file even if it is a do nothing function. A complete
list of the functions can be found in the API Calls chapter.

The name of the node used in this structure must match the
name entered in a code model’s IFS file if the code model is
going to process the UDN’s data type. You can see this by
examining the rgain.mod file in the rgain Model directory of
under the Real DLL directory.

udn_r2_create
Any time new data is needed for a this node type (real2),
ISSPICE4 will call the udn_r2_create function of the udn_real2_info
data structure.

void udn_r2_create(CREATE_ARGS)
{

/* allocate space for a real struct */
MALLOCED_PTR = MALLOC(sizeof(double));

}

The purpose of this function is to allocate storage for the data
elements. In the case of real data, a simple double value.

udn_r2_dismantle
This function is used to free any memory used during a
processing step. Since this function is not required, and no
memory is allocated within this node type, this function is left
empty.

void udn_r2_dismantle(DISMANTLE_ARGS)
{ // There is nothing to dismantle
}

138

USER-DEFINED NODE

udn_r2_initialize
This function is called any time the create function is called and
a copy is not being performed. It is used to provide a stable initial
value for the data elements within the UDN. For this example,
the double allocated is set to 0.0.

void udn_r2_initialize(INITIALIZE_ARGS)
{

double *real_struct = STRUCT_PTR;

/* Initialize to zero */
*real_struct = 0.0;

}

udn_r2_invert
This function is used to process the leading “~” that can be
placed in front of a node in a netlist. The code should correctly
process the inversion for the data type of the UDN. In the case
of real data, the value is multiplied by minus one.

void udn_r2_invert(INVERT_ARGS)
{

double *real_struct = STRUCT_PTR;

/* Invert the state */
*real_struct = -(*real_struct);

}

und_r2_copy
This function is used to copy the contents of one data structure
into another structure of the same type. This function is most
often called after an event has caused a new value to be added
to the event queue. In this case, the new structure is created,
using udn_r2_create, and the new contents are copied into the
data structure.

void udn_r2_copy(COPY_ARGS)
{

double *real_from_struct = INPUT_STRUCT_PTR;
double *real_to_struct = OUTPUT_STRUCT_PTR;

139

EXAMPLES

/* Copy the structure */
*real_to_struct = *real_from_struct;

}

und_r2_resolve
This function is called whenever two or more ports are con-
nected to a node. ISSPICE4 will use this function to determine the
correct value for the node. In the case or real data, the resolve
function is used to provide a summing function.

void udn_r2_resolve(RESOLVE_ARGS)
{

double **array = (double**) INPUT_STRUCT_PTR_ARRAY;
double *out = OUTPUT_STRUCT_PTR;
int num_struct = INPUT_STRUCT_PTR_ARRAY_SIZE;
double sum;
int i;
/* Sum the values */
for(i = 0, sum = 0.0; i < num_struct; i++)
sum += *(array[i]);
/* Assign the result */
*out = sum;

}

udn_r2_compare
This function is used to define the comparison operation for the
UDN data type.

void udn_r2_compare(COMPARE_ARGS)
{

double *real_struct1 = STRUCT_PTR_1;
double *real_struct2 = STRUCT_PTR_2;
/* Compare the structures */
if((*real_struct1) == (*real_struct2))
EQUAL = TRUE;
else
EQUAL = FALSE;

}

udn_r2_plot_val, udn_r2_print_val, udn_r2_ipc_val
These functions are not currently supported. They should
appear as empty, do nothing function, like udn_XXX_dismantle.

140

Node Bridges (Hybrid Models)

A node bridge, also referred to as a hybrid model, is a code
model that uses multiple node types. The node bridge is a
special case of the hybrid model. Its sole purpose is to translate
a signal from one data type to another. This example will cover;

• Creating the node bridge IFS file.

• The structure of a node bridge model definition file.

IFS File
As with all code models an IFS file must be created. The only
distinction between this code model’s IFS file and other IFS files
is that the PORT_TABLE section will describe two different
node types.

PORT_TABLE:

Port_Name: in out
Description: �input� �output�
Direction: in out
Default_Type: real2 v
Allowed_Types: real2 [v, vd, i, id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

The ports, in and out, describe two different node types. Notice
that “in” requires that the input connection be to a node type of
“real2”. If any other node type is connected to this port ISSPICE4
will generate an error. The name specified for the Allowed or
Default types should reflect the name given to the node type in
the UDN definition file for the desired node type. The remaining
output port, “out”, can be any analog voltage or current.

NODE BRIDGES (HYBRID MODELS)

141

EXAMPLES

Node Bridge Definition File
As with the other code models the definition file starts by calling
the function as named in the IFS file with the ARGS argument.

void ucm_r2_to_a (ARGS)

After the initial function call all variables are declared.

double *t, *v, *g;
double *in;

Before we proceed to the initialization code we use the pointer,
*in, to retrieve the input to the code model.

in = INPUT(in);

This line will be executed for ever iteration through the code
model. Next, the INIT section is called during the initialization of
the code model.

if(INIT) {
// allocate memory

cm_event_alloc(TS, 2 * sizeof(double));
cm_event_alloc(VS, 2 * sizeof(double));
cm_event_alloc(GAIN, sizeof(double));

 // retrieve pointers
t = (double *) cm_event_get_ptr(TS, 0);
v = (double *) cm_event_get_ptr(VS, 0);
g = (double *) cm_event_get_ptr(GAIN, 0);

// initialize pointers
t[0] = -2.0;
t[1] = -1.0;
v[0] = *in;
v[1] = *in;
*g = PARAM(gain);

}

As with other code models the INIT section is used to perform
one-time allocation and initialization. The cm_event_alloc API
call allocates memory for event pointers. The pointers are
retrieved using cm_event_get_ptr. These API calls use integer

142

NODE BRIDGES (HYBRID MODELS)

tags, TS, VS, and GAIN, that uniquely identify the block of
memory. The easiest way to provide these tags is through
enumeration or definition. In this case, we defined the tags as:

#define TS 0
#define VS 1
#define GAIN 2

The else clause of the INIT section retrieves the pointers for all
subsequent iterations through the code model.

else {
// retrieve pointers

t = (double *) cm_event_get_ptr(TS, 0);
v = (double *) cm_event_get_ptr(VS, 0);
g = (double *) cm_event_get_ptr(GAIN, 0);

}

Now that the input has been read and all memory has been
allocated and initialized we can process the input and create an
output. The significant feature of the node bridge’s definition file
is that it contains calls to both the analog and event-driven
simulation algorithms. For this code model we use a case-
switch statement and the CALL_TYPE API call to detect the
algorithm that is calling the bridge code model.

// detect simulation algorithm
switch(CALL_TYPE) {

The case statements use the ANALOG or EVENT definitions to
detect the algorithm being used.

case ANALOG:
if(TIME == 0.0) {
OUTPUT(out) = *in * *g;
v[0] = *in;
v[1] = *in;

}
else {
if(TIME <= t[0])
OUTPUT(out) = v[0] * *g;

else if(TIME >= t[1])

143

EXAMPLES

OUTPUT(out) = v[1] * *g;
else {

OUTPUT(out) = (v[0] + (v[1] - v[0]) *
(TIME - t[0]) / (t[1] - t[0])) * *g;

}
}
break;

case EVENT:
if(TIME == 0.0)
return;

if(TIME >= t[1]) {
v[0] = v[1];
v[1] = *in;
t[0] = TIME;
t[1] = TIME + PARAM(transition_time);

}
else {
v[0] = v[0] + (v[1] - v[0]) *

(TIME - t[0]) / (t[1] - t[0]);
v[1] = *in;
t[0] = TIME;
t[1] = TIME + PARAM(transition_time);

}
break;

}

The ANALOG section is used to process the analog outputs
based on the information calculated in the EVENT section.

144

NODE BRIDGES (HYBRID MODELS)

145

APPENDICESAppendices

Appendix A: Translation Of SPICE 3 Data Structures

The following table illustrates commonly encountered SPICE 3
data members and indexes the appropriate paragraph that
explains a method of using the code model XDL to make
simplified access.

SPICE 3 Code Model XDL Notes to See

ckt->CKTmode & MODEXXX isMODEXXX "codedef.h"

here->instanceVar newVar instance variables

model->modelParam PARAM(modelParam) model parameters

*(ckt->CKTstate0 + here->CAPqcap) *charge State variables

*(ckt->CKTrhs + here->myNode) *output Outputs

Defining Model Parameters:
The code model XDL accesses model parameters using the
PARAM accessor. You simply replace:

model->DIOjunctionPot
with PARAM(DIOjunctionPot)

where DIOjunctionPot is defined in your “.IFS” file.

Note: you cannot use XDL accessors in header files because
the code model compiler does not expand header files.

146

APPENDIX A

Instance Variables:
In SPICE 3, there are 2 kinds of instance variables

1) Parameters passed into the model
2) Computed values

In the code model XDL, there is no provision for the first type;
each model must describe all parameters. You can either
convert these to model parameters as shown above or use
instance variables and initialize them in the code as shown.

Replace SPICE 3 references like here->DIOarea with:

Initialization: newVar(n); /* reserves space for n instance
variables (all are doubles) */

Access: double * here = getVarPtr(0);
/* gets a pointer to an array of variables for
this instance */

Setup: DIOarea = 1.0 // set default if non zero

Header file: #define IdxDIOarea 12 // the 12th element
#define DIOarea (here[IdxDIOarea]) // lvalue

Defining State Variables:
In SPICE 3, state variables are accessed using macros; for
example, *(ckt->CKTstate0 + here->CAPqcap) is ex-
panded to *(ckt->CKTstate[0] + here->CAPqcap),
where here->CAPqcap is an integer offset into the array. The
equivalent in the code model XDL is:

thisStatePtr[here->CAPqcap] or
*(thisStatePtr() +here->CAPqcap).

We recommend that the SPICE 3 code be altered as follows:

Change the SPICE 3 state references from:
*(ckt->CKTstate0 + here->CAPqcap)

to: CKTstate0[CAPqcap]

147

APPENDICES

Initialize:
newState(CAPsize); // reserve CAPsize states
// get a fast pointer to current states
double * CKTstate0 = thisStatePtr(0);
// get a fast pointer to previous states
double * CKTstate1 = lastStatePtr(0);

Place the following in a header to be included:
typedef enum {

...
 CAPqcap,
 CAPccap,
 CAPsize;

} CAPstates;

Inputs:
In SPICE 3, inputs are found in the solution vector and are of the
form:

*(ckt->CKTrhs + here->myNode)

In the code model XDL, the inputs are specified by name in the
“.IFS” file and are referenced in your code using the INPUT
accessor so that the above translates to INPUT(myNode).

Outputs:
In SPICE 3, outputs are place in the MNA matrix and its
excitation Vector using rules based on their type. In the code
model XDL, the matrix loading is done for you so all you need
to do is send the output to the XDL using the OUTPUT and
PARTIAL accessors. For example the following shows how a
diode could be models:

SPICE 3 Code Model XDL

*(ckt->CKTrhs + here->DIOnegNode) += cdeq; OUTPUT(diode) = cdeq;
*(ckt->CKTrhs + here->DIOposNode) -= cdeq;

*(here->DIOposPosPtr) += gd; PARTIAL(diode,diode)= gd;
*(here->DIOnegNegPtr) -= gd;

148

General Considerations:
SPICE 3 allows models to add internal nodes; this is usually
done to add series resistance. There is currently no provision
for this in the code model XDL. You must either solve the
equations inside the code model or add the extra parts using the
subcircuit capabilities of ISSPICE4.

Code Models do not pass parameters to the models. In general,
these parameters should be placed in the “.IFS” file as model
parameters. Be sure to assign defaults. There will be a different
model for each instance with different model parameters.

SPICE 3 models will iterate through all models and instances;
this is unnecessary in the code model. The XDL takes care of
resolving objects down to the instance level.

SPICE 3 models have separate files for temperature, setup, AC
load, DC load and Tran load. These are all done within the
“.MOD” file as shown in the Code Model Development chapter.

Appendix B: The SPICE 3 CKTcircuit Data Structure

In ISSPICE4, all models are passed a pointer to the current circuit,
CKTcircuit *, data. In the code model XDL this data is found
within the private data structure by including the header
“codeinit.h” just after the code model cm_model(ARGS) func-
tion declaration in the “.mod” file. The include is automatically
added to the “.c” file by the code model compiler.

This header establishes 3 stack variables which are:

Mif_Info_t * _mif_info_ptr_; // code model data
int _state_index_; /* the index of the first state

used by this instance */
CKTcircuit * _ckt_; // the current circuit data

These variables are then used in the “codedefs.h” header to
expand the various macros. Not all possible CKTcircuit struct
members have been resolved by these macros. You can
access other members directly using the _ckt_ pointer or by

APPENDIX A

149

APPENDICES

adding your own header file. Again, the _mif_info_ptr_ and the
private pointer should be used only for debugging; they are not
described and they may change in future releases.

Appendix C: Project Settings

The following is a list of project settings for developing a code
model DLL using the CMSDK. These settings are not the only
way to arrange you project. They are meant as a starting point.
Please adjust your environment to suit your needs.

• The project must be set to a Dynamic Link Library not using
MFC. It should include all .C files that will be constructed
from .MOD files and dll_main.C located in the CMCOMMON
directory. If non exist at the time the project is created, the
project will only include dll_main.c. After running the “Con-
vert MOD to C” tool add the resulting C files to the project.

• The INCLUDE directory of the CMSDK and the DLL direc-
tory must be added to the Include Files search path. This
can be done by adding “.\..\..\INCLUDE” to the Visual C++
Include path option.

• The OBJ directory under the CMCOMMON directory must
be added to the Library search path. This is done by adding
“..\CMCOMMON\OBJ” to the Visual C++ Library path.

• The _X86_ definition should be removed from the project.

The remaining options are set depending on the way you want
to run and debug the DLL. The best way to determine the
settings is to examine on of the example projects for you version
of Visual C++.

Visual C++ 1.1
• Select Debug... from the Options menu and enter the

following information;

spice4.exe path to test directory\testfile.cir

150

• Copy SPICE4.EXE into the DLL directory when it is time to
run the DLL.

Visual C++ 2.0
• Select Settings... from the Project menu.

• Select both the Release and Debug from the Setting For:
field.

• Select the Debug tab and enter the path and name of the
IsSpice4 executable located in the ICAP/4Windows direc-
tory structure.

• Enter the name of the test file, and the path to the test file, in
the Program Arguments field.

• Select the Link tab.

• Enter the path to the IsSpice4 executable located in the
ICAP/4Windows directory structure and the name of the
DLL you are building into the Output file Name: field.

APPENDIX C

INDEX

151

Index

C

C Function Name 31
C_Function_Name 30
CALL_TYPE 53, 59, 142
CALLOC 55, 59
capacitive load 132
capacitor example 13
CAPG 12
cktABSTOL 59
CKTcircuit data structure 13
cktNOMTEMP 60
cktRELTOL 60
cktTEMP 60
cktVOLT_TOL 61
Clean DLL 25
Clean11.Bat 25
Cleanout.Bat 25
cm_analog_auto_partial 56, 61
cm_analog_converge 56, 62
cm_analog_not_converged 56, 62
cm_analog_set_perm_bkpt 56, 63
cm_analog_set_temp_bkpt 56, 64
cm_climit_fcn 56, 64
cm_complex_add 56, 66
cm_complex_div 56, 66
cm_complex_mult 56, 66
cm_complex_set 56, 67
cm_complex_sub 56, 67
cm_event_alloc 55, 68, 131, 141
cm_event_get_ptr 55, 68, 132, 142
cm_event_queue 56, 69
cm_gain 116
cm_message_get_errmsg 56, 69
cm_message_send 56, 70
cm_netlist_get_c 56, 71

.C 43

.H 24

.MOD 37, 43

.Model 31, 45
\ 47
~ 138

A

AC analysis 16, 121, 125, 130
AC_GAIN 37, 41, 54, 57, 116, 125
accessor macros 9, 51
adding tools 25
AHDL 9
allocate memory 131
Allowed Types 33
Allowed_Types 30
ANALOG 142
analog code model

example 113
ANALYSIS 38, 40, 53, 58, 116
API 51
API call 122
API calls 9
arbitrary source 14
ARGS 38, 52, 53, 58, 120

B

B element 14
behavioral modeling 9, 21
Berkeley SPICE 3C.1 10
bin 24
breakpoint 117
breakpoints 14
building the DLL 128

152

cm_netlist_get_l 56, 71
cm_ramp_factor 56, 62
cm_smooth_corner 55, 72
cm_smooth_discontinuity 55, 73
cm_smooth_pwl 55, 74
CMCOMMON directory 115
CML.DLL 9
CMLtgt.mak 24
CMPP 13, 24, 26, 38, 43, 51, 128
CMSDK 9

installing 7
code model 9

building 43
example 113
opening project 29

code model compiler 13
code model requirements 15
code models

creating 27
project directory 28

COMPARE_ARGS 49
Compiling 118
Complex_t 67, 120
convergence 12, 41, 42
Convert MOD to C 43, 149

example 117
Convert Mod To C 27
Convert Mod to C 26
COPY_ARGS 49
CPAG.MOD 122
CREAT_ARGS 48

D

d, port type 32
Data Type 34

Static Variable 36
Data_Type 30

DC analysis, example 123
DC operating point, UDN 136
DC sweep 15
Debug menu 117
debug version 117
debugging 44
Default Type 32
Default Value 34
Default_Type 30
Default_Value 30
definition file

gain model 116
UDN 136

deltaTemp 54, 74
derivative 40
Description

Name Table 31
Parameter Table 34
Port Table 32
Static Variable 36

digital, initialization 132
digital example 130
digital load 132
digital node 134
digital OR gate 130
digital simulation 17, 19
Digital_State_t 92, 130
Digital_Strength_t 80
Direction 30, 32
directory structure 23
DISMANTLE_ARGS 48
DLL

CML 9
directory 23, 47
executing 43
Simple 113

DLL_MAIN.C 115
doc 24

INDEX

153

E

EQUAL 54, 75
EVENT 142
event 17
event-driven code model

example 130, 133
Evt_Udn_Info_t 50, 136
example

DC analysis 123
digital 130
gain 113
INIT routine 121
node bridge 140
User-Defined Node 135

examples 24
eXtended Description Language 10

F

fast pointers 38, 39, 122
file location 114
FREE 55
frequency, complex axis 16
frequency analysis 40

G

g, port type 32
Gain example 113
gd, port type 32
Georgia Tech 10
getVar 55, 76
getVarPtr 55, 77, 122, 146
gMIN 54, 77
gmin stepping 14

H

h, port type 32
hardware protection key 8
hardware requirements 7

hd, port type 32
hybrid 9
hybrid model 140

I

i, port type 32
id, port type 32
ID string 114
Ident.h 24
ident.h 114
IFS 27, 38

creating 29
parameter name 52
port name 52

IFS file 10
gain example 115
node bridge 140

ifspec.ifs 115
imagFreq 40, 54, 77
imaginary 121
include 24
INIT 13, 36, 38, 39, 53, 78

digital 132
example 121
node bridge 141

INITIALIZE_ARGS 49
INPUT 37, 53, 78, 147
INPUT_SIZE 37
INPUT_STATE 53, 79
INPUT_STRENGTH 53, 80
INPUT_STRUCT_PTR 54, 80
INPUT_STRUCT_PTR_ARRAY 54, 81
INPUT_STRUCT_PTR_ARRAY_SIZE 54, 82
INPUT_TYPE 53
installing 7
installing The CMSDK 7
instance variables 13, 37, 146
integral 42
integration 12, 13, 41
Interface Specification File 29

154

INVERT_ARGS 49
IS directory 117
isBYPASS 55
isINIT 55, 82
isMODEAC 55, 83
isMODEINITFIX 55, 83
isMODEINITJCT 55, 83
isMODEINITPRED 38, 43, 55, 84
isMODEINITSMSIG 55, 84
isMODEINITTRAN 38, 41, 55, 84, 126
isMODETRAN 55, 85
isMODETRANOP 55, 85
isMODEUIC 55, 86
ISSPICE3 21
ISSPICE4

analyses 16
arbitrary source 14
CKTcircuit data structure 13
memory usage 13
simulation flow 14

iteration 42

K

Kirchoff’s current law 11

L

lastSTATE 55
lastSTATEptr 39, 55, 86, 123
lastStatePtr 147
license levels 114
Limits 30

Parameter Table 35
LOAD 53, 87, 132
local variables 120

M

macromodel 10
macromodeling 21
MakeDLL.Mak 24

makefile.cml 24
MALLOC 55
MALLOCED_PTR 54, 88
memory 13
memory allocation 36, 39, 43, 131
Microsoft Visual C++ 7
MIF_AC 38, 40, 116, 125
Mif_Complex_t 67
MIF_DC 38, 40
Mif_Info_t 148
Mif_Private_t 58
MIF_TRAN 38, 41, 126
MOD 27
MOD file 10
mod_to_c.cml 24
mod_to_c.mak 24, 26, 43
model directory 23
Model Definition File 37
model directory 23
model parameter 118
modeling, behavioral 9
models, SPICE 3 13
modified nodal analysis 11
modpath.lst 24, 28, 114

N

Name, Static Variable 36
NAME_TABLE 30
newState 12, 39, 55, 88, 122, 147
Newton-Raphson 12
newVar 13, 37, 55, 89, 122, 145
nmake.exe 26, 43
nodal analysis 11
node bridge 18

example 140
nonlinear differential equations 11
Null Allowed

Parameter Table 35
Port Table 30, 33

INDEX

155

O

operating point 14, 15
example 123
UDN 135

OUTPUT 37, 41, 54, 90, 147
OUTPUT_CHANGED 54, 90, 133
OUTPUT_DELAY 54, 91
OUTPUT_SIZE 37
OUTPUT_STATE 54, 92, 134
OUTPUT_STRENGTH 54, 92, 134
OUTPUT_STRUCT_PTR 54, 93
OUTPUT_TYPE 54

P

PARAM 37, 53, 94, 116, 145
PARAM_NULL 35, 53, 95, 126
PARAM_SIZE 53, 94
Parameter Name 34
Parameter Table 30, 34
Parameter_Name 30
PARTIAL 37, 40, 54, 96, 147
partial derivative 40, 124
partial derivatives 12
PLOT_VAL_ARGS 49
pole-zero analysis 16, 125
polynomial sources 14
port, UDN 135
Port Name 30, 32
Port Table 30
port type

d 32
g 32
gd 32
h 32
hd 32
i 32
id 32

user-defined 32
v 32
vd 32
vname 32

PORT_NULL 53, 97
PORT_SIZE 53, 97, 132
PORT_TABLE

node bridge 140
postQuit 54, 98
predictor algorithm 12
primitive 10
PRINT_VAL_ARGS 49
private data structure 120
private data structures 13
project directory 28
project file

debug info 29
opening 29
output generation 29
UDN 48

project settings 149

Q

QuickWatch 118

R

RAD_FREQ 53, 98
real 121
Real DLL directory 135
real2 136
realFreq 40, 54, 98
REALLOC 55
reference designation

code models 45
requirements

software/hardware 7
RESOLVE_ARGS 49
rgain.mod 137

156

S

s_xfer 31
signal translation 140
Simp11.DLL 117
Simple.Mak 114
simulation process 14
small signal gain 40
software requirements 7
source stepping 14
SPICE 2

polynomial controlled sources 14
SPICE 2G.6 21
SPICE 3

model conversion 145
models 13

SPICE Model Name 31
Spice_Model_Name 30
src 24
SRC directory

Simple 113
state variable 10, 12
state variables 39, 41, 146
stateIntegrate 13, 41, 42, 56, 99
Static Variable Table 36
static variables 36, 37, 122
STATIC_VAR 37, 54, 101
STATIC_VAR_SIZE 54
storage 13
strength 80
STRUCT_MEMBER_ID 54, 102
STRUCT_PTR 54, 102
STRUCT_PTR_1 54, 103
STRUCT_PTR_2 54, 103
support files 28
switch-case arrangement 123
syntax, code models 45

T

T() 105
T(n) 53
TEMPERATURE 53, 106
temperature calculations 13
test 24
testing the DLL 117
The Name Table 31
The Port Table 32
thisSTATE 55, 104
thisSTATEptr 39, 55, 123
thisStatePtr 146
TIME 53, 142
time domain analysis 16
Tools menu 25
TOTAL_LOAD 53, 106
transient analysis 16
Transient simulation 14
tut_or.mod 130

U

UDN 46
building 50
definition file 47, 48
example 140
operation 135

udn_int_compare 49
udn_int_copy 49
udn_int_create 48
udn_int_dismantle 48
udn_int_initialize 49
udn_int_invert 49
udn_int_plot_val 49
udn_int_print_val 49
udn_int_resolve 49
udn_r2_compare 139
udn_r2_create 137
udn_r2_dismantle 137

INDEX

157

udn_r2_initialize 138
udn_r2_invert 138
udn_real2_info 137
udn_XXX_compare 57, 107
udn_XXX_copy 57, 108
udn_XXX_create 57, 107
udn_XXX_dismantle 57, 108
udn_XXX_info 50
udn_XXX_initialize 57, 109
udn_XXX_invert 57, 110
udn_XXX_ipc_val 57
udn_XXX_plot_val 57
udn_XXX_plotval 111
udn_XXX_print_val 57, 110, 111
udn_XXX_resolve 57, 111
UDNpath.Lst 47
udnpath.lst 24, 28, 114
UIC 14
und_r2_copy 138
und_r2_resolve 139
User-Defined Node

example 135
functions 57

user-defined node 18
User-Defined Nodes 46
user-defined, port type 32
using the code model 45

V

v, port type 32
variables

circuit (ckt) 148
instance 146
state 146

vd, port type 32
Vector 30

Parameter Table 35
Port Table 33

Vector Bounds

Parameter Table 35
Port Table 33

Vector_Bounds 30
VHDL 10
Visual C++ 10
vnam, port type 32

W

Windows NT 7

X

XDL 10
XSPICE 10, 21

