
Matrix Solution: The DSP control equations can 
be expressed using matrix algebra as shown in 
Figure 1. Assume there are j states that need to 
be evaluated, with k of them having a delay 
history. The equations can be arranged as shown 
with all trivial solutions at the bottom of the 
matrix. Let Hn be the history value Hn. Then the 
j+k by j sub matrix at the top will have its right 
hand side equal to zero. After solving the matrix 
the Vn values are substituted into the Hn RHS for 
the next iteration. There may be more states than 
history because some of the states may include 
input and outputs. The main diagonal is scaled to 
be 1 so that there is no divide required in the 
solution. For large j, the matrix coefficients should 
be sparse and non zero values should be near 
the main diagonal. That’s equivalent to having a 
number of blocks with a single input and output 
cascaded. If the original matrix had non-zero 
coefficients below the main diagonal, then the 
matrix solves an algebraic set of simultaneous 
equations. DSP’s can be made to have to all zero 
values below the main diagonal by judicious use 
of backward euler integration to break up the 
signal flow. That has the side effect of adding 
delays and reducing controller bandwidth. 
 
 
LU decomposition, following the forward 
substitution gives us exactly what’s needed [2]. 
Then backward substitution is a multiply 
accumulate series for all non zero coefficients 
followed by division by the main diagonal value. If 
mixed precision is used, the main diagonal can 
be normalized to unity; eliminating the division. If 
integer or fractional scaling is used, the result can 
be multiplied by a predetermined constant, 
formed by dividing the scaling value by the main 
diagonal value, then applying the inverse of the 
scaling value to the outputs. The solution 
proceeds from the jth row and j+1 column, 
summing the products of the non-zero coefficient 
with their associated states. An array of 
coefficients is made in the order they will be used 
and a corresponding array of state-pointers can 
be made to make maximum use of the DSP 
multiply accumulate capability. 
 
const int16  coef[numRowCoef]; 
iInt16 * varptr[numRowCoef]; 
int16 Vn; 
while (numRowCoef--) 
 Vn += *Coef++ *  *(*varptr++)); 
 
C compilers will figure this out; but there’s always 
hand coded assembly language to fall back on. 
 
For Reduced Instruction Set Computers, RISC, it 
may be necessary to limit the range of variable 
index change from one computation to the next. 
This can be accomplished by moving the rows 
with H coefficient up until they are just below the 
first coefficient used in that column, and the 

moving the column left to place the unit value on 
the main diagonal. Such a movement doesn’t 
change the Lower triangle zero condition; but it 
tends to cluster coefficients along the main 
diagonal. Then the varptr usage shown above is 
replaced as shown below: 
 
const int16  coef[numRowCoef]; 
iInt16  offset[numRowCoef]; 
int16 *varptr; 
int16 Vn; 
while (numRowCoef--) 
 Vn += *Coef++ *  *(varptr + 
*offset++); 
 
This form may need some adjustment depending 
on how the C compiler does its optimization. If 
the user identifies states that need a solution, 
then unwanted states can be eliminated by matrix 
manipulation. That reduces the number of MAC 
initializations and result storage; making a faster 
solution. 
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Figure 1, A matrix solution has RHS(0 thru j)=0 
 
TODO: Extract matrix from spice 
 Eliminate trivial data (0 current stuff) 
 Eliminate unwanted states 
 Code Generation 
 If-then-else resolution 
 
 
 


